Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia
<p>Data-processing scheme of the land suitability analysis for mangrove planting. AHP: analytic hierarchy process. MIROC5: Model for Interdisciplinary Research on Climate 5. CNRM-CM5.1: Centre National de Recherches Météorologiques Climate model version 5.</p> "> Figure 2
<p>Map of land suitability for mangrove planting based on the results of the analytic hierarchy process (AHP) method.</p> "> Figure 3
<p>Map of land suitability for mangrove planting based on the results of the analytic hierarchy process (AHP) method and the application of the human pressure parameters.</p> "> Figure 4
<p>Map of the current potential land suitability for mangrove planting without the use of the analytic hierarchy process (AHP) method.</p> "> Figure 5
<p>Map of the current potential land suitability for mangrove planting without the use of the analytic hierarchy process (AHP) method, but with the influence of human pressure.</p> "> Figure 6
<p>Maps of the land suitability for mangrove planting in 2050 and 2070 using the Centre National de Recherches Météorologiques Climate model version 5 (CNRM-CM5.1) and the analytic hierarchy process (AHP) method with the application of human pressure parameters. RCP: representative concentration pathways.</p> "> Figure 7
<p>Comparison of the suitable land area for mangrove plating with the RCP 2.6, 4.5, and 8.5 scenarios in (<b>a</b>) 2050 and; (<b>b</b>) 2070. The data for each country were normalized using the Centre National de Recherches Météorologiques Climate model version 5 (CNRM-CM5.1) and by applying human pressure parameters with the analytic hierarchy process (AHP) method. RCP: representative concentration pathways.</p> "> Figure 8
<p>Map of land suitability for mangrove planting in 2050 and 2070 using the Model for Interdisciplinary Research on the Climate (MIROC5) and the analytical hierarchy process (AHP) method with the application of human pressure parameters. RCP: representative concentration pathways.</p> "> Figure 9
<p>Comparison of the suitable land areas with RCP 2.6, 4.5, and 8.5 in (<b>a</b>) 2050 and; (<b>b</b>) 2070. The data for each country were normalized using the Model for Interdisciplinary Research on the Climate (MIROC5) and by applying human pressure parameters with the analytical hierarchy process (AHP) method.</p> "> Figure 10
<p>Total restorable mangrove area [<a href="#B102-remotesensing-12-03734" class="html-bibr">102</a>].</p> "> Figure 11
<p>Comparison of the results of the land suitability for mangrove planting in Southeast Asia obtained from this study (with and without the use of the analytic hierarchy process (AHP) method) and the potential restoration results obtained from Worthington and Spalding (2019, [<a href="#B102-remotesensing-12-03734" class="html-bibr">102</a>]).</p> "> Figure 12
<p>The total area included in the very suitable category for nine Southeast Asian countries in 2050 and 2070 predictions for three representative concentration pathways (RCP), according to the Centre National de Recherches Météorologiques Climate model version 5 (CNRM-CM5.1) and the Model for Interdisciplinary Research on Climate (MIROC5).</p> "> Figure 13
<p>Comparison of the suitable land areas of RCP 2.6, 4.5, and 8.5 in 2050 and 2070. The data of each country were normalized based on the analytic hierarchy process (AHP) method, and the application of human pressure parameters with (<b>a</b>) the Centre National de Recherches Météorologiques Climate model version 5 (CNRM-CM5.1), (<b>b</b>) the Model for Interdisciplinary Research on Climate (MIROC5). RCP: representative concentration pathways.</p> "> Figure 14
<p>Comparison of land suitability for mangrove restoration in North and Middle Andaman obtained from: (<b>A</b>) this study, (<b>B</b>) [<a href="#B102-remotesensing-12-03734" class="html-bibr">102</a>], and (<b>C</b>) [<a href="#B56-remotesensing-12-03734" class="html-bibr">56</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Parameters and Hierarchy Building
2.1.1. Hydrodynamic
2.1.2. Geomorphology
2.1.3. Climate
2.1.4. Human Pressure
2.1.5. Climate Prediction Model
2.2. Creation of the Basemap
2.3. Classification of the Parameter
2.4. Determination of the Parameters Weight
2.5. Scenario Generation of Land Suitability
3. Results
3.1. Land Suitability for Mangrove Planting as Determined with the AHP Method
3.2. Current Potential Land Suitability for Mangrove Planting without the AHP Method
3.3. Land Suitability for Mangrove Planting Using the AHP Method and Climate Models
3.3.1. Land Suitability for Mangrove Planting in 2050 and 2070 Using the CNRM-CM5.1 Model and the AHP Method
3.3.2. Potential Land Suitability for Mangrove Planting in 2050 and 2070 Using the MIROC5 Model and the AHP Method
4. Discussion
4.1. Comparison of Our Results with Those of Other Studies
4.2. Comparison RCPs Scenario in Terms of the Potential Land Suitability for Mangrove Planting in the Future
4.3. Uncertainties in Selecting Land Suitable for Mangrove Replanting
4.4. Possible Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sub-Parameter | Sea Water Temperature | Energy from Sea Wave and Sea Tide | Tidal Inundation |
---|---|---|---|
Sea water temperature | 1 | 1/3 | 1/3 |
Energy from sea wave and sea tide | 3 | 1 | 1/3 |
Tidal inundation | 3 | 2 | 1 |
n = 3; λ = 2.965; CI = −0.0177; RI = 0.58; CR = −0.031 |
Sub-Parameter | Weight |
---|---|
Sea water temperature | 0.15 |
Energy from sea wave and sea tide | 0.31 |
Tidal inundation | 0.54 |
Sub-Parameter | Slope | Bathymetry | Elevation |
---|---|---|---|
Slope | 1.000 | 3.000 | 1/3 |
Bathymetry | 1.000 | 1.000 | 1/4 |
Elevation | 1.000 | 2.000 | 1.000 |
n = 3; λ = 3.067; CI = 0.034; RI = 0.58; CR = 0.058 |
Sub-Parameter | Weight |
---|---|
Slope | 0.35 |
Bathymetry | 0.22 |
Elevation | 0.43 |
Sub-Parameter | Air Temperature | Precipitation | Evaporation |
---|---|---|---|
Air temperature | 1.000 | 1.000 | 3.000 |
Precipitation | 1/3 | 1.000 | 4.000 |
Evaporation | 1/2 | 1/4 | 1.000 |
n = 3; λ = 3.016; CI = 0.008; RI = 0.58; CR = 0.014 |
Sub-Parameter | Weight |
---|---|
Air temperature | 0.45 |
Precipitation | 0.38 |
Evaporation | 0.17 |
Sub-Parameter | Weight | New weight |
---|---|---|
Tidal inundation | 0.54 | 0.25 |
Slope | 0.35 | 0.16 |
Elevation | 0.43 | 0.20 |
Air temperature | 0.45 | 0.21 |
Precipitation | 0.38 | 0.17 |
References
- Baran, E. A review of quantified relationships between mangroves and coastal resources. Phuket Mar. Biol. Cent. Res. Bull. 1999, 62, 57–64. [Google Scholar]
- Barbier, E.B.; Edward, B. Valuing the environmental as input: Review of applications to mangrove-fishery linkages. Ecol. Econ. 2000, 35, 47–61. [Google Scholar] [CrossRef]
- Nagelkerken, L.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M. The habitat function of mangroves for terrestrial and marine fauna: A review. Aqua Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef] [Green Version]
- Cannicci, S.; Burrows, D.; Fratini, S.; Smith III, T.J.; Offenberg, J.; Dahdouh-Guebas, F. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aqua Bot. 2008, 89, 186–200. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kebbedy, C.; Loch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Soc. Am. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Kathiresan, K.; Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 2005, 65, 601–606. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Jayatissa, L.P.; Nitto, D.D.; Bosire, J.O.; Seen, D.L.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Robertson, A.I.; Duke, N.C. Mangrove fish-communities in tropical Queensland, Australia: Spatial and temporal patterns in densities, biomass and community structure. Mar. Biol. 1990, 104, 369–379. [Google Scholar] [CrossRef]
- Paillon, C.; Wantiez, L.; Kulbicki, M.; Labonne, M.; Vigliola, L. Extent of mangrove nursery habitats determines the geographic distribution of coral reef fish in a South-Pacific Archipelago. PLoS ONE 2014, 9, e105158. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Spalding, M.D.; Blasco, F.; Field, C.D. World Mangrove Atlas, 3rd ed.; The International Society for Mangrove Ecosystems: Okinawa, Japan, 1997; 178p. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO) of the United Nations. The world’s mangroves 1980–2005. FAO For. Pap. 2007, 153, 18–77. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drives of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aqua Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Alongi, D.M. The impact of climate change on mangrove forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Ward, R.D.; Friess, D.A.; Day, R.H.; Mackenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2016, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Riascos, J.M.; Cantera, J.R.; Blanco-Libreros, J.F. Growth and mortality of mangrove seedlings in the wettest neotropical mangrove forests during ENSO: Implications for vulnerability to climate change. Aquat. Bot. 2018, 147, 34–42. [Google Scholar] [CrossRef]
- Aburto-oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2007, 105, 10456–10459. [Google Scholar] [CrossRef] [Green Version]
- Andradi-Brown, D.A.; Howe, C.; Mace, G.M.; Knight, A.T. Do mangrove forest restoration or rehabilitation activities return biodiversity to pre-impact levels? Environ. Evid. 2013, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Elster, C. Reasons for reforestation success and failure with three mangrove species in Columbia. For. Ecol. Manag. 2000, 131, 201–214. [Google Scholar] [CrossRef]
- Lewis, R.R., III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Primavera, J.H.; Esteban, J.M.A. A review of mangrove rehabilitation in the Philippines: Successes, failures and future prospects. Wetl. Ecol. Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Samson, M.S.; Rollon, R.N. Growth performance of planted mangrove in the Philippines: Revisiting forest management strategies. AMBIO 2008, 37, 234–240. [Google Scholar] [CrossRef]
- Zaldívar-Jiménez, M.A.; Herrera-Silveira, J.A.; Teutli-Hernández, C.; Comín, F.A.; Andrade, J.L.; Molina, C.C.; Ceballos, R.P. Conceptual framework for mangrove restoration in the Yucatán Peninsula. Ecol. Restor. 2010, 28, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Winterwerp, J.C.; Erftemeijer, P.L.A.; Suryadiputra, N.; van Eijk, P.; Zhang, L. Defining eco-morphodynamic requirements for rehabilitating eroding mangrove-mud coasts. Wetlands 2013, 33, 515–526. [Google Scholar] [CrossRef]
- Brown, B.; Fadillah, R.; Nurdin, Y.; Soulsby, I.; Ahmad, R. Community based ecological mangrove rehabilitation (CBEMR) in Indonesia. Surv. Perspect. Integr. Environ. Soc. 2014, 7, 1–11. [Google Scholar]
- Kodikara, K.A.S.; Mukherjee, N.; Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 2017, 25, 705–716. [Google Scholar] [CrossRef]
- Earlie, C.; Masselink, G.; Russell, P. The role of beach morphology on coastal cliff erosion under extreme waves. Earth Surf. Process Landf. 2018, 43, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.S.; Zhou, Y.W.; Hou, Y.W.; Chen, G.Z. The restoration of mangrove wetlands: A review. Acta Ecol. Sin. 2008, 28, 786–797. [Google Scholar]
- Maslin, M.; Austin, P. Climate models at their limit? Nature 2012, 486, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Intergovermental Panel on Climate Change (IPCC). Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Schewe, J.; Levermann, A. A statistically predictive model for future monsoon failure in India. Environ. Res. Lett. 2012, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Shi, Y.; Tung, W.; Trapp, R.J.; Gao, X.; Pal, J.S.; Diffenbaugh, N.S. Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett. 2009, 26, L01704. [Google Scholar] [CrossRef] [Green Version]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014, 41, 547–554. [Google Scholar] [CrossRef]
- Eslami-Andargoli, L.; Dale, P.; Sipe, N.; Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 2009, 85, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Gilman, E.; Ellison, J. Efficacy of alternative low-cost approach to mangrove restoration, American Samoa. Estuaries Coasts 2007, 30, 641–651. [Google Scholar] [CrossRef]
- Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T.M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 2018, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of seather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–51. [Google Scholar] [CrossRef]
- Field, C. Impacts of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Duke, N.C.; Ball, M.C.; Ellison, J.C. Factors influencing biodiversity and distributional gradients in mangrove. Glob. Ecol. Biogeogr. 1998, 7, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J., III; Duke, N.C. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. J. Biogeogr. 1987, 14, 9–19. [Google Scholar] [CrossRef]
- Ball, M.C.; Sobrado, M.A. Ecophysiology of mangroves: Challenges in linking physiological processes with patterns in forest structure. In Advances in Plant Physiological Ecology; Press, M.C., Scholes, J.D., Barker, M.G., Eds.; Blackwell Science: Oxford, UK, 2002; pp. 331–346. [Google Scholar]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Balk, D.; Montgomery, M.R.; McGranahan, G.; Kim, D.; Mara, V.; Todd, M.; Buettner, T.; Dorelien, A. Mapping urban settlements and the risks of climate change in Africa, Asia and South America. Popul. Dyn. Clim. Chang. 2009, 80, 103. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Smith, K. We are sevel billion. Nat. Clim. Chang. 2011, 1, 331–335. [Google Scholar] [CrossRef]
- Vo, Q.T.; Oppelt, N.; Leinenkugel, P.; Kuenzer, C. Remote sensing in mapping mangrove ecosystems-an object-based approach. Remote Sens. 2013, 5, 183–201. [Google Scholar] [CrossRef] [Green Version]
- Zhen, J.; Liao, J.; Shen, G. Mapping mangrove forests of Dongzhaigang nature reserve in China using Landsat 8 and Radarsat-2 polimetric SAR data. Sensors 2018, 18, 4012. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Li, X.; Shi, X.; Wang, S. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 2008, 28, 336–346. [Google Scholar] [CrossRef]
- Fauzi, A.; Sakti, A.; Yayusman, L.; Harto, A.; Prasetyo, L.; Irawan, B.; Kamal, M.; Wikantika, K. Contextualizing mangrove forest deforestation in Southeast Asia using environmental and socio-economic data product. Forests 2019, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Sahoo, S.; Majumdar, D.; Saha, S.; Roy, S. Future mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 2019, 234, 597–614. [Google Scholar] [CrossRef]
- Monsef, H.A.; Hassan, M.A.A.; Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 2017, 141, 310–326. [Google Scholar] [CrossRef]
- Wang, F. The use of artificial neural networks im a geographical information system for agricultural land-suitability assessment. Environ. Plan. 1994, 26, 265–284. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Ghadiri, E.; Darban, A.R.S.; Gholizadeh, A. Land suitability modeling by parametric-based neural networks and fuzzy methods for soybean production in a semi-arid region. Modeling Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bojórquez-Tapia, L.A.; Diaz-Mondragón, S.; Ezcurra, E. GIS-based approach for participatory decision making and land suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 129–151. [Google Scholar] [CrossRef]
- Joerin, F.; Thériault, M.; Musy, A. Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 153–174. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban Syst. 2002, 26, 89–112. [Google Scholar] [CrossRef]
- Shalaby, A.; Ouma, Y.O.; Tateishi, R. Land suitability assessment for perennial crops using remote sensing and geographic information system: A case study in northwestern Egypt. Arch. Agron. Soil Sci. 2006, 52, 243–261. [Google Scholar] [CrossRef]
- Foshtomi, M.D.; Norouzi, M.; Rezaei, M.; Akef, M.; Akbarzadeh, A. Qualitative and economic land suitability evaluation for tea (Camellia sinesis L.). J. Biol. Environ. Sci. 2011, 5, 135–146. [Google Scholar]
- Olayeye, A.O.; Akinbola, G.E.; Marake, V.M.; Molete, S.F.; Mapheshoane, B. Soil in suitability evaluation for irrigated lowland rice culture in Southwestern Nigeria: Management implication for sustainability. Commun. Soil Sci. Plant Anal. 2008, 39, 2920–2938. [Google Scholar] [CrossRef]
- Chandio, I.A.; Matori, A.N.; Yusof, K.; Talpur, M.A.H.; Aminu, M. GIS-basedland suitability analysis of sustainable hillside development. Procedia Eng. 2014, 77, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Jaiswal, R.K.; Hegde, V.S.; Jayaraman, V. Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. Int. J. Remote Sens. 2009, 30, 879–895. [Google Scholar] [CrossRef]
- Cengiz, T.; Akbulak, C. Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: A case study of Dȕmrek village (Canakkale, Turkey). Int. J. Sustain. Dev. World Ecol. 2009, 16, 286–294. [Google Scholar] [CrossRef]
- Jafari, S.; Zaredar, N. Land suitability analysis using multi attributr decision making approach. Int. J. Environ. Sci. Dev. 2010, 1, 441–445. [Google Scholar] [CrossRef]
- Chandio, I.A.; Matori, A.N.; Lawal, D.U.; Sabri, S. GIS- based land suitability analysis using AHP for public parks planning in Larkana City. Mod. Appl. Sci. 2011, 5, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Feizizadeh, B.; Blaschke, T. Land suitability analysis for Tabriz Country, Iran: A multi-criteria evaluation approach using GIS. J. Environ. Plan. Manag. 2012, 56, 1–23. [Google Scholar] [CrossRef]
- Akinci, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- García, J.L.; Alvarado, A.; Blanco, J.; Jiménez, E.; Maldonado, A.A.; Cortés, G. Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an analytic hierarchy process. Comput. Electron. Agric. 2014, 100, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Wang, L. Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process. PLoS ONE 2013, 8, e69498. [Google Scholar] [CrossRef]
- Parry, J.A.; Ganaie, S.A.; Bhat, M.S. GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. J. Urban Manag. 2018, 7, 46–56. [Google Scholar]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Sci. Data 2019, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, T.; Qu, Z.; Yang, Z.; Ji, X.; Zhou, Y.; Zhang, H. Use of evidential reasoning and AHP to assess regional industrial safety. PLoS ONE 2018, 13, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papathoma-Köhle, M.; Schlögl, M.; Fuchs, S. Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Saaty, R.M. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Bennett, A.F. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. Am. Meteorol. Soc. 2002, 19, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Nael, C.J.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Janowiak, J.E.; Joyce, R.J.; Yarosh, Y. A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Am. Meteorol. Soc. 2001, 82, 205–217. [Google Scholar] [CrossRef] [2.3.CO;2" target='_blank'>Green Version]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gregorio, A. UN Land Cover Classification System (LCCS)-Classification Concepts and User Manual for Software Version 2; Food Agriculture Organization of the United Nation: Rome, Italy, 2005. [Google Scholar]
- Doxsey-Whitfield, E.; MacManus, K.; Adamo, S.B.; Pistolesi, L.; Squires, J.; Borkovska, O.; Baptista, S.R. Taking advantage of the improved availability of census data: A first look at the gridded population of the world, version 4. Pap. Appl. Geogr. 2015, 1, 226–234. [Google Scholar] [CrossRef]
- Kummu, M.; Taka, M.; Guillaume, J.H.A. Data descriptor: Gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data 2018, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s black marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Melia, D.S.; Decharme, B.; Cassou, C.; Senesi, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Kamworapan, S.; Surussavadee, C. Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteorol. 2019. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Monsef, H.A.; Ayman, S.H.A.; Smith, S.E. Locating suitable mangrove plantation sites along the Saudi Arabia Red Sea Coast. J. Afr. Earth Sci. 2013, 83, 1–9. [Google Scholar] [CrossRef]
- Duke, C.N. Mangrove floristics and biogeography. Trop. Mangrove Ecosyst. 1992, 41, 63–100. [Google Scholar]
- Leong, R.C.; Friess, D.A.; Crase, B.; Lee, W.K.; Webb, E.L. High-resolution pattern of mangrove species distribution is controlled by surface elevation. Estuar. Coast. Shelf Sci. 2017, 202, 185–192. [Google Scholar] [CrossRef]
- Suprakto, B.; Soemarno, M.; Arfianti, D. Development of mangrove conservation area based on land suitability and environmental carrying capacity (case study Probolinggo Coastal Area, East Java, Indonesia). Int. J. Ecosyst. 2014, 4, 107–118. [Google Scholar]
- Clarke, L.D.; Hannon, N.J. The mangrove swamp and salt marsh communities of the Sydney District: II the holocoenotic complex with particular reference to physiography. J. Ecol. 1969, 57, 213–234. [Google Scholar] [CrossRef]
- Primavera, J.H.; Savaris, J.D.; Bajoyo, B.; Coching, J.D.; Curnick, D.J.; Golbeque, R.; Guzman, A.T.; Henderin, J.Q.; Joven, R.V.; Loma, R.A.; et al. Manual on Community-Based Mangrove Rehabilitation-Mangrove Manual Series No.1; ZSL: London, UK, 2012; Volume viii, 240p. [Google Scholar]
- New Country Classifications by inCome Level: 2019–2020. Available online: https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2019-2020 (accessed on 18 December 2019).
- Caraka, R.E.; Lee, Y.; Kurniawan, R.; Herliansyah, R.; Kaban, P.A.; Nasution, B.I.; Gio, P.U.; Chen, R.C.; Toharudin, T.; Pardamean, B. Impact of COVID-19 large scale restriction on environment and economy in Indonesia. Glob. J. Environ. Sci. Manag. 2020, 2, 65–84. [Google Scholar]
- Woolson, R.F. Wilcoxon signed-rank test. Wiley Encycl. Clin. Trials 2007, 9, 1–3. [Google Scholar]
- Worthington, T.; Spalding, M. Mangrove Restoration Potential: A global map highlighting a critical opportunity. 2018. Available online: https://doi.org/10.17863/CAM.39153 (accessed on 24 June 2020).
- McKee, K. Soil physiochemical patterns and mangrove species distribution-reciprocal effercts? J. Ecol. 1993, 81, 477–487. [Google Scholar] [CrossRef]
- Ellison, J. South Pacific mangroves may respond to predicted climate change and sea level rise. In Climate Change in the South Pacific: Impacts and Responses in Australia, New Zealand, and Small Islands States; Gillespie, A., Burns, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; Chapter 15; pp. 289–301. [Google Scholar]
- Snedaker, S. Mangroves and climate change in the Florida and Caribbean region: Scenario and hypotheses. Hydrobiologia 1995, 295, 43–49. [Google Scholar] [CrossRef]
- Snedaker, S. Impact on mangroves. In Climate Change in the Intra-American Seas: Implications of Future Climate Change on the Ecosystems and Socio-economic Structure of the Marine and Coastal Regimes of the Caribbean Sea, Gulf of Mexico, Bahamas and N. E. Coast of South America; Maul, G.A., Ed.; Edward Arnold: London, UK, 1993; pp. 282–305. [Google Scholar]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2013, 202, 19–34. [Google Scholar] [CrossRef] [Green Version]
- UN High Commissioner for Refugees (UNHCR). The Sustainable Development Goals and Addressing Statelessness, March 2017. Available online: https://www.refworld.org/docid/58b6e3364.html (accessed on 16 May 2020).
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement. 12 December 2015. Available online: https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 24 June 2020).
- Sakti, A.D.; Fauzi, A.I.; Wilwantikta, F.N.; Rajagukguk, Y.S.; Sudhana, S.A.; Yayusman, L.F.; Syahid, L.N.; Sritarapipat, T.; Principe, J.A.; Trang, N.T.Q.; et al. Multi-source remote sensing data product analysis: Investigating anthropogenic and naturogenic impacts on mangroves in Southeast Asia. Remote Sensing 2020, 12, 2720. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.D.; Takeuchi, W. A Data-Intensive Approach to Address Food Sustainability: Integrating Optic and Microwave Satellite Imagery for Developing Long-Term Global Cropping Intensity and Sowing Month from 2001 to 2015. Sustainability 2020, 12, 3227. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Varquez, A.C.G.; Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci. Data 2019, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Sakti, A.D.; Tsuyuki, S. Spectral Mixture Analysis of Peatland Imagery for Land Cover Study of Highly Degraded Peatland in Indonesia. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science; Copernicus Publications: Göttingen, Germany, 2015; Volume XL-7/W3. [Google Scholar]
- Peddle, D.R.; Brunke, S.P.; Hall, F.G. A Comparison of Spectral Mixture Analysis and Ten Vegetation Indices for Estimating Boreal Forest Biophysical Information from Airborne Data. Can. J. Remote Sens. 2001, 27, 627–635. [Google Scholar] [CrossRef]
- Tveito, O.E. The Developments in Spatialization of Meteorological and Climatological Elements. In Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology; Dobesch, H., Dumolard, P., Dyras, L., Eds.; ISTE Ltd.: London, UK, 2007; pp. 73–86. [Google Scholar]
- Szentimrey, T.; Bihari, Z.; Szalai, S. Comparison of Geostatistical and Meteorological Interpolation Methods (What is What?). In Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology; Dobesch, H., Dumolard, P., Dyras, L., Eds.; ISTE Ltd.: London, UK, 2007; pp. 45–56. [Google Scholar]
Parameter | Sub-Parameter | Class Value | Class | Reference | |
---|---|---|---|---|---|
Land suitability parameters | Climate | Air temperature (°C) | 28–30 | Very suitable | [93] |
26–28, 30–32 | Suitable | ||||
8–26, 32–42 | Moderate | ||||
<8, >42 | Unsuitable | ||||
Precipitation (mm) | 1400–3750 | Very suitable | [94] | ||
1200–1400, 3750–4500 | Suitable | ||||
0–1200, 4500–7500 | Moderate | ||||
>7500 | Unsuitable | ||||
Geomorphology | Elevation (m) | (−0.25)–1.5 | Very suitable | [95] | |
(−0.20)–(−0.25), 1.5–1.8 | Suitable | ||||
(−0.20)–(−0.4), 1.8–2.8 | Moderate | ||||
<(−0.4), >2.8 | Unsuitable | ||||
Slope (%) | 0–2 | Very suitable | [96] | ||
2–2.15 | Suitable | ||||
2.15–2.5 | Moderate | ||||
>2.5 | Unsuitable | ||||
Hydrodynamic | Tidal inundation (m) | ≤0.4 | Very suitable | [97,98] | |
0.4–0.3 | Suitable | ||||
0.3–1.27 | Moderate | ||||
>1.27 | Unsuitable | ||||
Human pressure parameters | Land cover | - | 189–191 | Very high | - |
10–189, 191–210 | Low | ||||
Population | - | > 150 | Very high | - | |
50–150 | High | ||||
10–50.0 | Medium | ||||
<10 | Low | ||||
GDP per capita (PPP) | - | >12.375 | Very high | [99] | |
3.996–12.375 | High | ||||
1.026–3.996 | Medium | ||||
<1.026 | Low | ||||
Nightlight | - | 14–255 | Very high | - | |
10–14.0 | High | ||||
7.0–10 | Medium | ||||
2.0–7.0 | Low |
Parameter | Hydrodynamic | Geomorphology | Climate |
---|---|---|---|
Hydrodynamic | 1.000 | 1/3 | 2.000 |
Geomorphology | 1.000 | 1.000 | 2.000 |
Climate | 1.000 | 1/3 | 1.000 |
n = 3, λ = 2.91, CI = −0.046, RI = 0.58, CR = −0.01 |
Parameter | Sub-Parameter | |||
---|---|---|---|---|
Parameter | Weight of Parameter | Sub-Parameter | Weight of Sub-Parameter | Class Value |
Climate | 0.25 | Air temperature (°C) | 0.21 | 28–30 |
8–28, 30–42 | ||||
6–8, 42–44 | ||||
<6, >44 | ||||
Precipitation (cm) | 0.17 | 140–375 | ||
0–140, 375–750 | ||||
750–850 | ||||
>8500 | ||||
Geomorphology | 0.44 | Elevation (m) | 0.20 | (−0.25)–1.5 |
(−0.4)–(−0.25), 1.5–2.8 | ||||
(−1.5)–(−0.4), 2.9–3.5 | ||||
<(−1.5), >3.5 | ||||
Slope (%) | 0.16 | 0–2 | ||
2–2.5 | ||||
2.5–3 | ||||
3.0–4.0 | ||||
Hydrodynamic | 0.31 | Tidal inundation (m) | 0.25 | ≤0.4 |
0.4–1.27 | ||||
1.27–2 | ||||
2.0–3.0 |
Weighting Technique | Country | Very Suitable (ha) | Suitable (ha) | Moderate (ha) |
---|---|---|---|---|
With AHP | Brunei Darussalam | 0 | 4.050 | 26.388 |
Indonesia | 163.738 | 2762.350 | 12,741.319 | |
Cambodia | 20.106 | 122.694 | 180.519 | |
Myanmar | 1.006 | 110.638 | 1445.525 | |
Malaysia | 769 | 180.975 | 1332.781 | |
Philippines | 44.194 | 243.256 | 1752.450 | |
Singapore | 100 | 694 | 11.138 | |
Thailand | 60.538 | 173.075 | 662.563 | |
Vietnam | 1.750 | 455.238 | 872.931 | |
Without AHP | Brunei Darussalam | 0 | 75 | 11.388 |
Indonesia | 52.688 | 582.688 | 4826.194 | |
Cambodia | 4.488 | 50.538 | 152.625 | |
Myanmar | 0 | 28.400 | 378.800 | |
Malaysia | 13 | 36.475 | 428.294 | |
Philippines | 18.206 | 100.600 | 339.219 | |
Singapore | 0 | 156 | 1.100 | |
Thailand | 56.263 | 36.338 | 270.825 | |
Vietnam | 100 | 103.963 | 579.906 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syahid, L.N.; Sakti, A.D.; Virtriana, R.; Wikantika, K.; Windupranata, W.; Tsuyuki, S.; Caraka, R.E.; Pribadi, R. Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia. Remote Sens. 2020, 12, 3734. https://doi.org/10.3390/rs12223734
Syahid LN, Sakti AD, Virtriana R, Wikantika K, Windupranata W, Tsuyuki S, Caraka RE, Pribadi R. Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia. Remote Sensing. 2020; 12(22):3734. https://doi.org/10.3390/rs12223734
Chicago/Turabian StyleSyahid, Luri Nurlaila, Anjar Dimara Sakti, Riantini Virtriana, Ketut Wikantika, Wiwin Windupranata, Satoshi Tsuyuki, Rezzy Eko Caraka, and Rudhi Pribadi. 2020. "Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia" Remote Sensing 12, no. 22: 3734. https://doi.org/10.3390/rs12223734
APA StyleSyahid, L. N., Sakti, A. D., Virtriana, R., Wikantika, K., Windupranata, W., Tsuyuki, S., Caraka, R. E., & Pribadi, R. (2020). Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia. Remote Sensing, 12(22), 3734. https://doi.org/10.3390/rs12223734