A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization
"> Figure 1
<p>Calculation of local differences in SSTV, ASSTV, and our HSSTV. SSTV evaluates the <math display="inline"><semantics> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </semantics></math> norm of spatio-spectral differences (yellow line). ASSTV evaluates the <math display="inline"><semantics> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </semantics></math> norm of direct spatial and spectral differences (blue line). HSSTV evaluates the mixed <math display="inline"><semantics> <msub> <mi>ℓ</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> norm of direct spatial and spatio-spectral differences (red line).</p> "> Figure 2
<p>Restored HS images from an observation contaminated by similar noise in adjacent bands (the upper half area) and random noise (the lower half).</p> "> Figure 3
<p>Resulting HS images with their PSNR (<b>left</b>) and SSIM (<b>right</b>) in the mixed noise removal experiment (top: Salinas, the noise level (i), bottom: PaviaU, the noise level (ii)).</p> "> Figure 4
<p>Band-wise PSNR and SSIM and spatial and spectral responses in the mixed noise removal experiment (Suwannee).</p> "> Figure 5
<p>The denoising results on the real noise removal experiments.</p> "> Figure 6
<p>Resulting HS images with their PSNR (<b>left</b>) and SSIM (<b>right</b>) on the compressed sensing (CS) reconstruction experiment (top: KSC, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, bottom: Reno, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>).</p> "> Figure 7
<p>Band-wise PSNR and SSIM and spatial and spectral responses on the CS reconstruction experiment (Suwannee).</p> "> Figure 8
<p>PSNR or SSIM versus <math display="inline"><semantics> <mi>ω</mi> </semantics></math> in (<a href="#FD9-remotesensing-12-03541" class="html-disp-formula">8</a>) in the mixed noise removal experiment.</p> "> Figure 9
<p>PSNR or SSIM versus <math display="inline"><semantics> <mi>ω</mi> </semantics></math> in (<a href="#FD9-remotesensing-12-03541" class="html-disp-formula">8</a>) on the CS reconstruction experiment.</p> "> Figure 10
<p>PSNR or SSIM versus <math display="inline"><semantics> <mi>α</mi> </semantics></math> or <math display="inline"><semantics> <mi>β</mi> </semantics></math> on the mixed noise removal experiment (the noise level (ii), <b>top</b>: DC, <b>bottom</b>: KSC).</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Notation and Definitions
2.2. Proximal Tools
2.3. Alternating Direction Method of Multipliers (ADMM)
3. Related Works
3.1. TV-Based Methods
3.2. LRM-Based Method
3.3. Combined Method
4. Proposed
4.1. Hybrid Spatio-Spectral Total Variation
4.2. HS Image Restoration by HSSTV
Algorithm 1: ADMM method for Problem (10) |
5. Results
5.1. Denoising
5.2. Real Noise Removal
5.3. Compressed Sensing Reconstruction
6. Discussion
6.1. The Impact of The Weight
6.2. The Sensitivity of The Parameters and
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 1. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise reduction in hyperspectral imagery: Overview and application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Willett, R.M.; Duarte, M.F.; Davenport, M.A.; Baraniuk, R.G. Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection. IEEE Signal Process. Mag. 2014, 31, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Arce, G.R.; Brady, D.J.; Carin, L.; Arguello, H.; Kittle, D.S. Compressive coded aperture spectral imaging: An introduction. IEEE Signal Process. Mag. 2014, 31, 105–115. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral image denoising employing a spectral–spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3660–3677. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral Image Denoising Using Spatio-Spectral Total Variation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 442–446. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Luo, C. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans. Image Process. 2015, 24, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, P.; Du, Q.; Wu, Z.; Wei, Z. Hyperspectral Image Restoration Based on Low-Rank Recovery with a Local Neighborhood Weighted Spectral-Spatial Total Variation Model. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1–14. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4729–4743. [Google Scholar] [CrossRef]
- Sun, L.; Ma, C.; Chen, Y.; Zheng, Y.; Shim, H.J.; Wu, Z.; Jeon, B. Low rank component induced spatial-spectral kernel method for hyperspectral image classification. IEEE Trans. Circuits Syst. Video Technol. 2019, 4133–4148. [Google Scholar] [CrossRef]
- Li, H.; Sun, P.; Liu, H.; Wu, Z.; Wei, Z. Non-Convex Low-Rank Approximation for Hyperspectral Image Recovery with Weighted Total Varaition Regularization. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 2733–2736. [Google Scholar]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4257–4266. [Google Scholar] [CrossRef]
- Sun, L.; Wu, F.; Zhan, T.; Liu, W.; Wang, J.; Jeon, B. Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1174–1188. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Shen, H.; Zhang, L. Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 713–729. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.; Ren, Z.; Huang, H.; Zang, J. Hyperspectral Image Denoising Based on Nonlocal Low-Rank and TV Regularization. Remote Sens. 2020, 12, 1956. [Google Scholar] [CrossRef]
- Cao, W.; Wang, K.; Han, G.; Yao, J.; Cichocki, A. A robust PCA approach with noise structure learning and spatial–spectral low-rank modeling for hyperspectral image restoration. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3863–3879. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X.; Meng, D. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1227–1243. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wu, Z.; Jin, J.; Wang, T.; Shen, Y. Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising. Signal Process. 2018, 142, 11–26. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, T.; Wu, Z.; Xiao, L.; Jeon, B. Hyperspectral mixed denoising via spectral difference-induced total variation and low-rank approximation. Remote Sens. 2018, 10, 1956. [Google Scholar] [CrossRef] [Green Version]
- Ince, T. Hyperspectral Image Denoising Using Group Low-Rank and Spatial-Spectral Total Variation. IEEE Access 2019, 7, 52095–52109. [Google Scholar] [CrossRef]
- Gabay, D.; Mercier, B. A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 1976, 2, 17–40. [Google Scholar]
- Eckstein, J.; Bertsekas, D.P. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar]
- Takeyama, S.; Ono, S.; Kumazawa, I. Hyperspectral Image Restoration by Hybrid Spatio-Spectral Total Variation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 4586–4590. [Google Scholar]
- Takeyama, S.; Ono, S.; Kumazawa, I. Mixed Noise Removal for Hyperspectral Images Using Hybrid Spatio-Spectral Total Variation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3128–3132. [Google Scholar]
- Moreau, J.J. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Ser. A Math. 1962, 255, 2897–2899. [Google Scholar]
- Bresson, X.; Chan, T.F. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imag. 2008, 2, 455–484. [Google Scholar]
- Sun, L.; He, C.; Zheng, Y.; Tang, S. SLRL4D: Joint Restoration of Subspace Low-Rank Learning and Non-Local 4-D Transform Filtering for Hyperspectral Image. Remote Sens. 2020, 12, 2979. [Google Scholar]
- Afonso, M.; Bioucas-Dias, J.; Figueiredo, M. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar]
- Chierchia, G.; Pustelnik, N.; Pesquet, J.C.; Pesquet-Popescu, B. Epigraphical projection and proximal tools for solving constrained convex optimization problems. Signal Image Video Process. 2015, 9, 1737–1749. [Google Scholar]
- Ono, S.; Yamada, I. Signal recovery with certain involved convex data-fidelity constraints. IEEE Trans. Signal Process. 2015, 63, 6149–6163. [Google Scholar]
- Xie, Y.; Qu, Y.; Tao, D.; Wu, W.; Yuan, Q.; Zhang, W. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4642–4659. [Google Scholar]
- Ono, S. L0 gradient projection. IEEE Trans. Image Process. 2017, 26, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, S.; Ono, S.; Kumazawa, I. Robust and effective hyperspectral pansharpening using spatio-spectral total variation. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1603–1607. [Google Scholar]
- Takeyama, S.; Ono, S.; Kumazawa, I. Hyperspectral Pansharpening Using Noisy Panchromatic Image. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 880–885. [Google Scholar]
- Chan, S.H.; Khoshabeh, R.; Gibson, K.B.; Gill, P.E.; Nguyen, T.Q. An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 2011, 20, 3097–3111. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, S.; Ono, S.; Kumazawa, I. Hyperspectral and Multispectral Data Fusion by a Regularization Considering. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2152–2156. [Google Scholar]
- Hansen, P.C.; Nagy, J.G.; O’Leary, D.P. Deblurring Images: Matrices, Spectra, and Filtering; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]
- Combettes, P.L.; Pesquet, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2011; pp. 185–212. [Google Scholar]
- Golub, G.H.; Loan, C.F.V. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 2010, 40, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Combettes, P.L.; Pesquet, J.C. Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 2012, 20, 307–330. [Google Scholar] [CrossRef] [Green Version]
- Condat, L. A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 2013, 158, 460–479. [Google Scholar] [CrossRef] [Green Version]
- Ono, S.; Yamagishi, M.; Miyata, T.; Kumazawa, I. Image restoration using a stochastic variant of the alternating direction method of multipliers. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016. [Google Scholar]
- Chambolle, A.; Ehrhardt, M.J.; Richtárik, P.; Schonlieb, C.B. Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 2018, 28, 2783–2808. [Google Scholar] [CrossRef] [Green Version]
- Combettes, P.L.; Pesquet, J.C. Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 1813–1817. [Google Scholar]
- Ono, S. Efficient constrained signal reconstruction by randomized epigraphical projection. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4993–4997. [Google Scholar]
- SpecTIR. Available online: http://www.spectir.com/free-data-samples/ (accessed on 4 July 2016).
- MultiSpec. Available online: https://engineering.purdue.edu/biehl/MultiSpec (accessed on 4 July 2016).
- GIC. Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 4 July 2016).
- Liu, W.; Lee, J. A 3-D Atrous Convolution Neural Network for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Gou, Y.; Li, B.; Liu, Z.; Yang, S.; Peng, X. CLEARER: Multi-Scale Neural Architecture Search for Image Restoration. In Proceedings of the NeurIPS 2020: Thirty-Fourth Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Baraniuk, R.G. Compressive sensing. IEEE Signal Process. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Candès, E.; Wakin, M. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
Feature | Spatial Correlation | Spectral Correlation | Convexity | Hyperparameters | |
---|---|---|---|---|---|
Methods | |||||
HTV [6] | ◯ | × | convex | interdependent | |
SSAHTV [6] | ◯ | △ | convex | interdependent | |
SSTV [7] | △ | ◯ | convex | interdependent | |
ASSTV [8] | ◯ | ◯ | convex | interdependent | |
LRM [10,11] | × | ◯ | nonconvex | independent | |
LNWTV + LRM [9,12] | ◯ | ◯ | convex | interdependent | |
HTV + LRM [13] | ◯ | ◯ | nonconvex | interdependent | |
HTV + LRM [14,15] | ◯ | ◯ | convex | interdependent | |
ASSTV + LRM [16,17] | ◯ | ◯ | nonconvex | interdependent | |
SSTV + LRM [18,19,20] | ◯ | ◯ | convex | interdependent | |
SSTV + LRM [21,22] | ◯ | ◯ | nonconvex | interdependent | |
proposed | ◯ | ◯ | convex | independent |
Noise Level | (i) | (ii) | |
---|---|---|---|
Parameters | |||
ASSTV | 1 | 1 | |
3 | 2 | ||
LRMR | r | 3 | 3 |
k | (the rate of sparse noise) | ||
LRTV | r | 2 | 2 |
0.005 | 0.008 | ||
LLRGTV | r | 2 | 2 |
0.1 | 0.1 | ||
0.01 | 0.01 | ||
proposed | 0.04 | 0.04 |
HS Image | Noise Level | HTV | SSAHTV | SSTV | ASSTV | LRMR | LRTV | LLRGTV | Proposed () | Proposed () | |
---|---|---|---|---|---|---|---|---|---|---|---|
Beltsville | (i) | 29.43 | 29.47 | 33.66 | 27.16 | 30.91 | 35.32 | 33.61 | 34.25 | 34.16 | |
(ii) | 26.40 | 26.43 | 28.42 | 24.60 | 27.13 | 31.22 | 28.51 | 29.79 | 29.62 | ||
Suwannee | (i) | 30.14 | 30.18 | 34.59 | 32.60 | 30.30 | 36.20 | 33.35 | 35.15 | 36.01 | |
(ii) | 26.70 | 26.74 | 29.55 | 28.71 | 26.90 | 31.95 | 28.50 | 31.08 | 31.22 | ||
DC | (i) | 26.46 | 26.51 | 33.03 | 28.80 | 31.71 | 34.78 | 33.50 | 33.36 | 33.08 | |
(ii) | 23.84 | 23.88 | 27.71 | 25.25 | 27.35 | 29.53 | 28.14 | 28.57 | 28.32 | ||
Cuprite | (i) | 31.67 | 31.68 | 34.42 | 29.14 | 30.16 | 28.39 | 32.67 | 34.96 | 36.20 | |
(ii) | 28.20 | 28.21 | 29.86 | 26.57 | 27.32 | 27.94 | 27.99 | 31.63 | 31.73 | ||
Reno | (i) | 28.53 | 28.57 | 34.37 | 30.49 | 32.21 | 37.06 | 34.95 | 35.11 | 34.96 | |
(ii) | 25.56 | 25.61 | 28.11 | 26.95 | 28.47 | 31.00 | 27.99 | 29.83 | 29.72 | ||
Botswana | (i) | 27.98 | 28.05 | 33.32 | 26.47 | 31.62 | 29.00 | 32.02 | 33.61 | 33.53 | |
(ii) | 25.21 | 25.25 | 28.55 | 24.01 | 28.31 | 27.33 | 28.08 | 29.39 | 29.35 | ||
PSNR | IndianPines | (i) | 31.05 | 31.06 | 31.45 | 29.07 | 28.96 | 26.16 | 29.74 | 31.90 | 31.80 |
(ii) | 28.57 | 28.57 | 27.82 | 26.72 | 25.14 | 29.82 | 26.70 | 29.26 | 29.18 | ||
KSC | (i) | 30.17 | 30.25 | 34.74 | 31.64 | 33.74 | 35.74 | 34.75 | 36.39 | 36.33 | |
(ii) | 28.03 | 28.06 | 29.23 | 28.62 | 30.19 | 30.22 | 29.53 | 31.82 | 31.72 | ||
PaviaLeft | (i) | 27.62 | 27.70 | 35.57 | 30.91 | 33.01 | 36.49 | 34.75 | 35.98 | 35.81 | |
(ii) | 24.74 | 24.78 | 29.93 | 26.71 | 29.46 | 29.02 | 29.22 | 30.47 | 30.24 | ||
PaviaRight | (i) | 26.93 | 27.35 | 34.54 | 31.13 | 33.33 | 35.82 | 34.17 | 35.68 | 35.23 | |
(ii) | 24.90 | 25.16 | 30.70 | 27.23 | 29.82 | 29.08 | 29.24 | 31.59 | 31.39 | ||
PaviaU | (i) | 27.92 | 28.04 | 35.52 | 31.65 | 33.00 | 36.72 | 34.59 | 36.31 | 36.17 | |
(ii) | 25.24 | 25.29 | 30.21 | 27.42 | 29.43 | 28.90 | 29.17 | 31.04 | 30.80 | ||
Salinas | (i) | 32.59 | 32.64 | 35.86 | 32.83 | 31.82 | 36.74 | 34.36 | 37.60 | 37.65 | |
(ii) | 28.88 | 28.91 | 28.19 | 28.99 | 28.02 | 32.73 | 29.09 | 32.01 | 32.12 | ||
SalinaA | (i) | 32.54 | 32.65 | 35.29 | 28.12 | 31.18 | 28.49 | 34.07 | 36.27 | 36.23 | |
(ii) | 28.69 | 28.80 | 29.67 | 25.19 | 27.67 | 26.10 | 27.87 | 31.68 | 31.64 | ||
Beltsville | (i) | 0.7902 | 0.7904 | 0.8856 | 0.8111 | 0.8583 | 0.9372 | 0.9278 | 0.9132 | 0.9085 | |
(ii) | 0.6954 | 0.6959 | 0.7057 | 0.7177 | 0.7083 | 0.8568 | 0.8248 | 0.8186 | 0.8088 | ||
Suwannee | (i) | 0.8406 | 0.8410 | 0.9353 | 0.9052 | 0.8689 | 0.9502 | 0.9431 | 0.9559 | 0.9555 | |
(ii) | 0.7542 | 0.7552 | 0.8146 | 0.8226 | 0.7470 | 0.8930 | 0.8622 | 0.9125 | 0.9158 | ||
DC | (i) | 0.7622 | 0.7633 | 0.9274 | 0.8676 | 0.9248 | 0.9613 | 0.9548 | 0.9442 | 0.9394 | |
(ii) | 0.6189 | 0.6201 | 0.8092 | 0.7211 | 0.8214 | 0.8810 | 0.8722 | 0.8611 | 0.8533 | ||
Cuprite | (i) | 0.8550 | 0.8552 | 0.9179 | 0.8632 | 0.8495 | 0.9396 | 0.9411 | 0.9459 | 0.9426 | |
(ii) | 0.7849 | 0.7852 | 0.7717 | 0.7953 | 0.7098 | 0.8814 | 0.8524 | 0.9031 | 0.9058 | ||
Reno | (i) | 0.7818 | 0.7819 | 0.9322 | 0.8832 | 0.9012 | 0.9589 | 0.9523 | 0.9531 | 0.9515 | |
(ii) | 0.6640 | 0.6645 | 0.8045 | 0.7539 | 0.7905 | 0.8816 | 0.8640 | 0.8679 | 0.8635 | ||
Botswana | (i) | 0.7896 | 0.7900 | 0.9202 | 0.8199 | 0.9068 | 0.9282 | 0.9384 | 0.9343 | 0.9344 | |
(ii) | 0.6810 | 0.6820 | 0.8175 | 0.7095 | 0.8201 | 0.8564 | 0.8756 | 0.8745 | 0.8765 | ||
IndianPines | (i) | 0.8118 | 0.8120 | 0.8015 | 0.7671 | 0.7593 | 0.8190 | 0.8224 | 0.8335 | 0.8243 | |
SSIM | (ii) | 0.7713 | 0.7713 | 0.6229 | 0.7303 | 0.7893 | 0.7939 | 0.7433 | 0.7785 | 0.7689 | |
KSC | (i) | 0.8271 | 0.8278 | 0.9116 | 0.8922 | 0.8890 | 0.9385 | 0.9322 | 0.9542 | 0.9532 | |
(ii) | 0.7598 | 0.7602 | 0.7885 | 0.8064 | 0.7529 | 0.8427 | 0.8216 | 0.8809 | 0.8747 | ||
PaviaLeft | (i) | 0.7752 | 0.7770 | 0.9593 | 0.8828 | 0.9359 | 0.9612 | 0.9601 | 0.9661 | 0.9645 | |
(ii) | 0.6102 | 0.6116 | 0.8755 | 0.7267 | 0.8565 | 0.8791 | 0.8882 | 0.8898 | 0.8815 | ||
PaviaRight | (i) | 0.7769 | 0.7772 | 0.9494 | 0.8862 | 0.9256 | 0.9540 | 0.9470 | 0.9616 | 0.9598 | |
(ii) | 0.6474 | 0.6471 | 0.8635 | 0.7493 | 0.8261 | 0.8507 | 0.8551 | 0.9086 | 0.9006 | ||
PaviaU | (i) | 0.7973 | 0.7986 | 0.9452 | 0.8891 | 0.9124 | 0.9540 | 0.9493 | 0.9622 | 0.9610 | |
(ii) | 0.6776 | 0.6785 | 0.8444 | 0.7678 | 0.8103 | 0.8627 | 0.8649 | 0.8935 | 0.8855 | ||
Salinas | (i) | 0.8997 | 0.9002 | 0.9015 | 0.9163 | 0.8270 | 0.9509 | 0.9285 | 0.9561 | 0.9564 | |
(ii) | 0.8570 | 0.8575 | 0.7117 | 0.8732 | 0.6670 | 0.9225 | 0.8333 | 0.9223 | 0.9240 | ||
SalinaA | (i) | 0.9129 | 0.9137 | 0.9134 | 0.8468 | 0.8632 | 0.9384 | 0.9513 | 0.9448 | 0.9416 | |
(ii) | 0.8793 | 0.8803 | 0.7789 | 0.8110 | 0.7266 | 0.8951 | 0.8549 | 0.9197 | 0.9195 |
PSNR | SSIM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | HTV | SSAHTV | SSTV | ASSTV | Proposed () | Proposed () | HTV | SSAHTV | SSTV | ASSTV | Proposed () | Proposed () | |
Beltsville | 0.4 | 27.46 | 27.49 | 27.53 | 26.51 | 31.15 | 30.71 | 0.6829 | 0.6940 | 0.6013 | 0.6836 | 0.8105 | 0.7948 |
0.2 | 26.23 | 26.25 | 24.34 | 24.12 | 29.63 | 29.18 | 0.6363 | 0.6493 | 0.4348 | 0.6108 | 0.7604 | 0.7427 | |
Suwannee | 0.4 | 27.97 | 28.02 | 28.49 | 27.68 | 32.98 | 33.04 | 0.7332 | 0.7497 | 0.7377 | 0.7367 | 0.8902 | 0.8909 |
0.2 | 26.47 | 26.50 | 25.69 | 25.39 | 31.37 | 31.44 | 0.6810 | 0.7007 | 0.5739 | 0.6633 | 0.8531 | 0.8534 | |
DC | 0.4 | 24.69 | 24.73 | 27.33 | 24.71 | 29.70 | 29.29 | 0.6096 | 0.6242 | 0.7522 | 0.6245 | 0.8577 | 0.8460 |
0.2 | 23.31 | 23.33 | 24.16 | 22.69 | 27.98 | 27.59 | 0.5215 | 0.5384 | 0.6120 | 0.5037 | 0.7970 | 0.7846 | |
Cuprite | 0.4 | 29.94 | 29.96 | 28.21 | 28.59 | 34.36 | 34.34 | 0.7665 | 0.7804 | 0.6826 | 0.7652 | 0.8882 | 0.8895 |
0.2 | 28.77 | 28.77 | 25.79 | 26.38 | 32.97 | 32.95 | 0.7368 | 0.7525 | 0.5057 | 0.7207 | 0.8568 | 0.8578 | |
Reno | 0.4 | 26.99 | 27.05 | 27.82 | 26.49 | 31.80 | 31.61 | 0.6769 | 0.6868 | 0.7414 | 0.6730 | 0.8733 | 0.8705 |
0.2 | 25.57 | 25.61 | 25.57 | 24.52 | 30.22 | 30.04 | 0.6202 | 0.6326 | 0.6276 | 0.5940 | 0.8263 | 0.8228 | |
Botswana | 0.4 | 26.10 | 26.15 | 27.81 | 25.13 | 30.32 | 30.15 | 0.6683 | 0.6803 | 0.7551 | 0.6460 | 0.8563 | 0.8598 |
0.2 | 24.66 | 24.69 | 24.79 | 22.86 | 28.79 | 28.63 | 0.6014 | 0.6162 | 0.6225 | 0.5519 | 0.8119 | 0.8163 | |
IndianPines | 0.4 | 30.54 | 30.55 | 27.65 | 29.55 | 31.36 | 31.04 | 0.7497 | 0.7777 | 0.5066 | 0.7617 | 0.7806 | 0.7655 |
0.2 | 29.99 | 29.99 | 25.11 | 28.19 | 30.71 | 30.46 | 0.7366 | 0.7658 | 0.3488 | 0.7465 | 0.7589 | 0.7491 | |
KSC | 0.4 | 29.30 | 29.33 | 28.34 | 28.63 | 34.10 | 34.03 | 0.7660 | 0.7742 | 0.6814 | 0.7544 | 0.9019 | 0.9002 |
0.2 | 28.11 | 28.12 | 27.00 | 26.59 | 32.67 | 32.60 | 0.7318 | 0.7410 | 0.6008 | 0.7032 | 0.8698 | 0.8679 | |
PaviaLeft | 0.4 | 25.66 | 25.69 | 29.66 | 25.41 | 31.96 | 31.83 | 0.6082 | 0.6205 | 0.8386 | 0.5932 | 0.8900 | 0.8857 |
0.2 | 24.26 | 24.27 | 27.17 | 23.24 | 30.20 | 30.08 | 0.5103 | 0.5251 | 0.7319 | 0.4434 | 0.8418 | 0.8364 | |
PaviaRight | 0.4 | 25.83 | 25.85 | 29.86 | 25.61 | 32.45 | 32.21 | 0.6357 | 0.6423 | 0.7962 | 0.6275 | 0.8937 | 0.8877 |
0.2 | 24.30 | 24.30 | 27.54 | 23.61 | 30.56 | 30.38 | 0.5502 | 0.5584 | 0.6917 | 0.5069 | 0.8475 | 0.8392 | |
PaviaU | 0.4 | 26.49 | 26.53 | 30.02 | 26.38 | 32.88 | 32.70 | 0.6867 | 0.6956 | 0.7830 | 0.6818 | 0.8950 | 0.8901 |
0.2 | 24.95 | 24.97 | 27.35 | 24.08 | 31.13 | 30.96 | 0.6138 | 0.6242 | 0.6623 | 0.5680 | 0.8557 | 0.8508 | |
Salinas | 0.4 | 31.19 | 31.24 | 27.69 | 30.18 | 35.43 | 35.51 | 0.8577 | 0.8672 | 0.6153 | 0.8566 | 0.9222 | 0.9245 |
0.2 | 29.94 | 29.98 | 25.28 | 28.09 | 34.05 | 34.10 | 0.8404 | 0.8516 | 0.4620 | 0.8302 | 0.9052 | 0.9080 | |
SalinasA | 0.4 | 30.67 | 30.82 | 27.93 | 28.19 | 34.45 | 34.14 | 0.8647 | 0.8871 | 0.6595 | 0.8489 | 0.9178 | 0.9208 |
0.2 | 28.68 | 28.75 | 24.15 | 24.94 | 32.71 | 32.36 | 0.8387 | 0.8655 | 0.4810 | 0.8005 | 0.8966 | 0.9002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeyama, S.; Ono, S.; Kumazawa, I. A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization. Remote Sens. 2020, 12, 3541. https://doi.org/10.3390/rs12213541
Takeyama S, Ono S, Kumazawa I. A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization. Remote Sensing. 2020; 12(21):3541. https://doi.org/10.3390/rs12213541
Chicago/Turabian StyleTakeyama, Saori, Shunsuke Ono, and Itsuo Kumazawa. 2020. "A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization" Remote Sensing 12, no. 21: 3541. https://doi.org/10.3390/rs12213541
APA StyleTakeyama, S., Ono, S., & Kumazawa, I. (2020). A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization. Remote Sensing, 12(21), 3541. https://doi.org/10.3390/rs12213541