CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery
"> Figure 1
<p>Overview of our CSR-Net. The high-dimensional data are first reduced to a low-dimensional image by our CSR optimization layer. Then, the feature extractor contained a spatial attention module, and a spectral attention module is used to extract the spectral and spatial features. Finally, these features are fed into a fully connected classifier. The dimensionality reduction is conducted in the training stage, and the learned CSR is used to capture low-dimensional testing images.</p> "> Figure 2
<p>The two-dimensional t-SNE visualization on Indian Pines dataset for (<b>a</b>) the entire HSI and (<b>b</b>) the dimensionality-reduced image using the optimal CSR. Different colors denote different categories.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) The architecture of the two attention modules.</p> "> Figure 4
<p>The optimal CSR for the Salinas Valley dataset designed by our network. (<b>a</b>) The spectral distribution of the optimal CSR. Different colors denote CSR functions for different channels. (<b>b</b>) The corresponding singular values.</p> "> Figure 5
<p>(<b>a</b>–<b>d</b>) Comparisons between different dimensionality reduction methods.</p> "> Figure 6
<p>(<b>a</b>–<b>j</b>) Classification maps of the University of Pavia dataset. The OA results are provided in the brackets.</p> "> Figure 7
<p>(<b>a</b>–<b>j</b>) Classification maps of the Indian Pines dataset. The OA results are provided in the brackets.</p> "> Figure 8
<p>(<b>a</b>–<b>j</b>) Classification maps of the Salinas Valley dataset. The OA results are provided in the brackets.</p> "> Figure 9
<p>(<b>a</b>–<b>j</b>) Classification maps of the Kennedy Space Center dataset. The OA results are provided in the brackets.</p> ">
Abstract
:1. Introduction
- The physical process of CSR is modeled via a specific convolutional layer and the optimal CSR is learned automatically along with the entire classification model, which can reduce the dimensionality of spectral data in the image capturing process;
- In CSR-subspace, the spectral attention module and spatial attention module are further designed to effectively exploit the spectral–spatial correlation and enhance feature extraction ability.
2. Related Work
2.1. Learned Spectral Filters
2.2. Traditional Dimensionality Reduction for HSI
2.3. Deep Feature Extraction for HSI
3. The Proposed Method
3.1. Formulation and Motivation
3.2. CSR Optimization for Dimensionality Reduction
3.3. Deep Feature Extraction
3.4. Learning Details
4. Experimental Results and Analysis
4.1. Hyperspectral Datasets
4.2. Experimental Settings
4.3. CSR Analysis
4.3.1. The Optimal CSR
4.3.2. The Curse of Dimensionality
4.4. Compared with the State-of-the-Arts
4.4.1. Comparisons with Dimensionality Reduction Methods
4.4.2. Comparisons with Feature Extraction Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2013, 31, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: Mephysto—A toolbox for pre-processing drone-borne hyperspectral data. Remote Sens. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Yokoya, N.; Chan, J.C.W.; Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Benediktsson, J.A.; Ghamisi, P. Spectral-Spatial Classification of Hyperspectral Remote Sensing Images; Artech House: Boston, MA, USA, 2015. [Google Scholar]
- Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Challenges Lect. 2000, 1, 32. [Google Scholar]
- Lee, J.B.; Woodyatt, A.S.; Berman, M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE Trans. Geosci. Remote Sens. 1990, 28, 295–304. [Google Scholar] [CrossRef]
- Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.B. Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, W.; Du, Q. Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans. Cybern. 2018, 50, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Seydgar, M.; Alizadeh Naeini, A.; Zhang, M.; Li, W.; Satari, M. 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images. Remote Sens. 2019, 11, 883. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Tang, P.; Zhang, Z. A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1964. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 110–122. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual attention-driven hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Wu, P.; Cui, Z.; Gan, Z.; Liu, F. Residual Group Channel and Space Attention Network for Hyperspectral Image Classification. Remote Sens. 2020, 12, 2035. [Google Scholar] [CrossRef]
- Arad, B.; Ben-Shahar, O. Filter selection for hyperspectral estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3153–3161. [Google Scholar]
- Fu, Y.; Zhang, T.; Zheng, Y.; Zhang, D.; Huang, H. Joint camera spectral sensitivity selection and hyperspectral image recovery. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 788–804. [Google Scholar]
- Fu, Y.; Zhang, T.; Zheng, Y.; Zhang, D.; Huang, H. Hyperspectral image super-resolution with optimized rgb guidance. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 11661–11670. [Google Scholar]
- Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2011, 9, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Finkel, L.H. Hyperspectral image processing using locally linear embedding. In Proceedings of the First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 20–22 March 2003; pp. 316–319. [Google Scholar]
- Kuo, B.C.; Landgrebe, D.A. Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1096–1105. [Google Scholar]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2145–2160. [Google Scholar] [CrossRef]
- Deng, F.; Pu, S.; Chen, X.; Shi, Y.; Yuan, T.; Pu, S. Hyperspectral image classification with capsule network using limited training samples. Sensors 2018, 18, 3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. arXiv 2017, arXiv:1710.09829. [Google Scholar]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral Image Classification Using the Bidirectional Encoder Representation From Transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Xu, M.; Lu, Z.; Zhong, Y. DenseNet-based depth-width double reinforced deep learning neural network for high-resolution remote sensing image per-pixel classification. Remote Sens. 2018, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 740–754. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Rasti, B.; Ghamisi, P.; Gloaguen, R. Hyperspectral and lidar fusion using extinction profiles and total variation component analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3997–4007. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In International Conference on Machine Learning; Omnipress: Madison, WI, USA, 2010; pp. 807–814. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 20 December 2015; pp. 1026–1034. [Google Scholar]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44, 197–200. [Google Scholar] [CrossRef]
- Kuo, B.C.; Yang, J.M.; Sheu, T.W.; Yang, S.W. Kernel-based KNN and Gaussian classifiers for hyperspectral image classification. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 2. [Google Scholar]
Layer | Kernel Size | Padding | Stride |
---|---|---|---|
Conv1 | 0 | 1 | |
Batch Normalization | |||
ReLU | |||
Conv2 | 1 | 1 | |
Batch Normalization | |||
ReLU | |||
Conv3 | 0 | 1 | |
Batch Normalization | |||
ReLU |
Class No. | Color | Class Name | Samples |
---|---|---|---|
1 | Asphalt | 6631 | |
2 | Meadows | 18649 | |
3 | Gravel | 2099 | |
4 | Trees | 3064 | |
5 | Painted metal sheets | 1345 | |
6 | Bare Soil | 5029 | |
7 | Bitumen | 1330 | |
8 | Self-Blocking Bricks | 3682 | |
9 | Shadows | 947 |
Class No. | Color | Class Name | Samples |
---|---|---|---|
1 | Alfalfa | 46 | |
2 | Corn-notill | 1428 | |
3 | Corn-mintill | 830 | |
4 | Corn | 237 | |
5 | Grass-pasture | 483 | |
6 | Grass-trees | 730 | |
7 | Grass-pasture-mowed | 28 | |
8 | Hay-windrowed | 478 | |
9 | Oats | 20 | |
10 | Soybean-notill | 972 | |
11 | Soybean-mintill | 2455 | |
12 | Soybean-clean | 593 | |
13 | Wheat | 205 | |
14 | Woods | 1265 | |
15 | Buildings-Grass-Trees-Drives | 386 | |
16 | Stone-Steel-Towers | 93 |
Class No. | Color | Class Name | Samples |
---|---|---|---|
1 | Brocoli_green_weeds_1 | 2009 | |
2 | Brocoli_green_weeds_2 | 3726 | |
3 | Fallow | 1976 | |
4 | Fallow_rough_plow | 1394 | |
5 | Fallow_smooth | 2678 | |
6 | Stubble | 3959 | |
7 | Celery | 3579 | |
8 | Grapes_untrained | 11271 | |
9 | Soil_vinyard_develop | 6203 | |
10 | Corn_senesced_green_weeds | 3278 | |
11 | Lettuce_romaine_4wk | 1068 | |
12 | Lettuce_romaine_5wk | 1927 | |
13 | Lettuce_romaine_6wk | 916 | |
14 | Lettuce_romaine_7wk | 1070 | |
15 | Vinyard_untrained | 7268 | |
16 | Vinyard_vertical_trellis | 1807 |
Class No. | Color | Class Name | Samples |
---|---|---|---|
1 | Scrub | 761 | |
2 | Willow swamp | 243 | |
3 | CP hammock | 256 | |
4 | Slash pine | 252 | |
5 | Oak/Broadleaf | 161 | |
6 | Hardwood | 229 | |
7 | Swamp | 105 | |
8 | Graminoid marsh | 431 | |
9 | Spartina Marsh | 520 | |
10 | Cattail marsh | 404 | |
11 | Salt Marsh | 419 | |
12 | Mud flats | 503 | |
13 | Water | 927 |
Dataset | Metrics | ||||
---|---|---|---|---|---|
University of Pavia | OA (%) | ||||
Kappa | |||||
Indian Pines | OA (%) | ||||
Kappa | |||||
Salinas Valley | OA (%) | ||||
Kappa | |||||
Kennedy Space Center | OA (%) | ||||
Kappa |
Method | Dimension | University of Pavia | Indian Pines | ||
---|---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | ||
10 | |||||
20 | |||||
CSR-SVM | 30 | ||||
40 | |||||
50 | |||||
SVM | - | ||||
10 | |||||
20 | |||||
CSR-1DCNN | 30 | ||||
40 | |||||
50 | |||||
1D-CNN | - |
Dimension | Metrics | PCA | LLE | ICA | CSR-Opt |
---|---|---|---|---|---|
10 | OA (%) | ||||
Kappa | |||||
20 | OA (%) | ||||
Kappa | |||||
30 | OA (%) | ||||
Kappa | |||||
40 | OA (%) | ||||
Kappa | |||||
50 | OA (%) | ||||
Kappa |
Dimension | Metrics | PCA | LLE | ICA | CSR-Opt |
---|---|---|---|---|---|
10 | OA (%) | ||||
Kappa | |||||
20 | OA (%) | ||||
Kappa | |||||
30 | OA (%) | ||||
Kappa | |||||
40 | OA (%) | ||||
Kappa | |||||
50 | OA (%) | ||||
Kappa |
Dimension | Metrics | PCA | LLE | ICA | CSR-Opt |
---|---|---|---|---|---|
10 | OA (%) | ||||
Kappa | |||||
20 | OA (%) | ||||
Kappa | |||||
30 | OA (%) | ||||
Kappa | |||||
40 | OA (%) | ||||
Kappa | |||||
50 | OA (%) | ||||
Kappa |
Dimension | Metrics | PCA | LLE | ICA | CSR-Opt |
---|---|---|---|---|---|
10 | OA (%) | ||||
Kappa | |||||
20 | OA (%) | ||||
Kappa | |||||
30 | OA (%) | ||||
Kappa | |||||
40 | OA (%) | ||||
Kappa | |||||
50 | OA (%) | ||||
Kappa |
Class No. | DT | LR | KNN | 1D-CNN | 2D-CNN | 3D-CNN | VAD | CSR-Net |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
7 | ||||||||
8 | ||||||||
9 | ||||||||
OA (%) | ||||||||
AA (%) | ||||||||
Kappa |
Class No. | DT | LR | KNN | 1D-CNN | 2D-CNN | 3D-CNN | VAD | CSR-Net |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
7 | ||||||||
8 | ||||||||
9 | ||||||||
10 | ||||||||
11 | ||||||||
12 | 68.71 | |||||||
13 | ||||||||
14 | ||||||||
15 | ||||||||
16 | ||||||||
OA (%) | ||||||||
AA (%) | ||||||||
Kappa |
Class No. | DT | LR | KNN | 1D-CNN | 2D-CNN | 3D-CNN | VAD | CSR-Net |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
7 | ||||||||
8 | ||||||||
9 | ||||||||
10 | ||||||||
11 | ||||||||
12 | ||||||||
13 | ||||||||
14 | ||||||||
15 | ||||||||
16 | ||||||||
OA (%) | ||||||||
AA (%) | ||||||||
Kappa |
Class No. | DT | LR | KNN | 1D-CNN | 2D-CNN | 3D-CNN | VAD | CSR-Net |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | 6718 | |||||||
7 | ||||||||
8 | ||||||||
9 | ||||||||
10 | ||||||||
11 | ||||||||
12 | ||||||||
13 | ||||||||
OA (%) | ||||||||
AA (%) | 88.46 | |||||||
Kappa |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Fu, Y.; Zheng, Y.; Li, W. CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery. Remote Sens. 2020, 12, 3294. https://doi.org/10.3390/rs12203294
Zou Y, Fu Y, Zheng Y, Li W. CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery. Remote Sensing. 2020; 12(20):3294. https://doi.org/10.3390/rs12203294
Chicago/Turabian StyleZou, Yunhao, Ying Fu, Yinqiang Zheng, and Wei Li. 2020. "CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery" Remote Sensing 12, no. 20: 3294. https://doi.org/10.3390/rs12203294
APA StyleZou, Y., Fu, Y., Zheng, Y., & Li, W. (2020). CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery. Remote Sensing, 12(20), 3294. https://doi.org/10.3390/rs12203294