Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification
"> Figure 1
<p>Manifold of symmetric positive definite (SPD) matrices and projection to the tangent space at <math display="inline"> <semantics> <msub> <mi mathvariant="bold">M</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </semantics> </math>.</p> "> Figure 2
<p>Principle of the proposed log-Euclidean Fisher vector encoding of region covariance matrices (Hybrid LE FV).</p> "> Figure 3
<p>Samples from the UC Merced dataset.</p> "> Figure 4
<p>Influence of dimension <span class="html-italic">d</span> of covariance matrices for Hybrid LE FV (conv 1) on the UC Merced dataset.</p> "> Figure 5
<p>Ensemble Hybrid LE FV workflow.</p> "> Figure 6
<p>Ensemble learning approach based on covariance pooling of CNN features (ELCP) workflow.</p> "> Figure 7
<p>Samples from the UC Merced dataset. Below, ground truth and class prediction by Ens. Hybrid LE FV and ELCP approaches.</p> "> Figure 8
<p>Samples from the Google image dataset of SIRI-WHU.</p> "> Figure 9
<p>Samples from the maritime pine forest dataset.</p> "> Figure 10
<p>Samples from the oyster racks dataset.</p> "> Figure 11
<p>Samples from the AID dataset.</p> ">
Abstract
:1. Introduction
- We propose a transfer learning approach, which efficiently combine local and global second-order representation of CNN features. For the local one, an ensemble learning extension of our log-Euclidean Fisher vector encoding of region covariance matrices [28] is introduced. For the global one, our covariance pooling of deepest CNN features is considered [44].
- An ensemble learning approach based on the most diverse ensembles is proposed to combine these decisions and enhance the classification performance.
- This transfer learning is validated on different labeled remote sensing datasets to illustrate its efficiency. Three are publicly available, namely UC Merced Land Use, SIRI-WHU and AID datasets. Two others are internal datasets, oyster racks and maritime pine forest datasets, which are manually labeled by thematic experts.
2. Log-Euclidean Framework for Second-Order Statistics of CNN Features
3. Local Covariance Pooling: Ensemble Log-Euclidean Fisher Vector Architecture
3.1. Hybrid Log-Euclidean Fisher Vector (Hybrid LE FV)
3.1.1. Region Covariance Matrices
3.1.2. Gaussian Mixture Model and Codebook Creation
3.1.3. Log-Euclidean Fisher Vector Encoding
3.1.4. Sensitivity Analysis
3.2. Ensemble Hybrid Log-Euclidean Fisher Vector (Ens. Hybrid LE FV)
4. Global Covariance Pooling: Ensemble Learning Based on Covariance Pooling of CNN Features (ELCP)
4.1. Main Motivations and Global Principle
4.2. Experimental Results
5. Decision Combination
5.1. Comparison Between Ens. Hybrid LE FV and ELCP Methods
5.2. Fusion Scheme
6. Experiments on Other Datasets
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivic, J.; Russell, B.C.; Efros, A.A.; Zisserman, A.; Freeman, W.T. Discovering objects and their location in images. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; pp. 370–377, volume 1. [Google Scholar] [CrossRef] [Green Version]
- Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311. [Google Scholar] [CrossRef] [Green Version]
- Arandjelović, R.; Zisserman, A. All about VLAD. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1578–1585. [Google Scholar]
- Perronnin, F.; Dance, C. Fisher kernels on visual vocabularies for image categorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Perronnin, F.; Sánchez, J.; Mensink, T. Improving the Fisher kernel for large-scale image classification. In Proceedings of the 11th European Conference on Computer Vision: Part IV, Heraklion, Greece, 5–11 September 2010; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 143–156. [Google Scholar]
- Perronnin, F.; Liu, Y.; Sánchez, J.; Poirier, H. Large-scale image retrieval with compressed Fisher vectors. In Proceedings of the The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3384–3391. [Google Scholar] [CrossRef]
- Douze, M.; Ramisa, A.; Schmid, C. Combining attributes and Fisher vectors for efficient image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 20–25 June 2011; pp. 745–752. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.; Perronnin, F.; Mensink, T.; Verbeek, J. Image classification with the Fisher vector: Theory and practice. Int. J. Comput. Vis. 2013, 105, 222–245. [Google Scholar] [CrossRef]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Faraki, M.; Harandi, M.T.; Porikli, F. More about VLAD: A leap from Euclidean to Riemannian manifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4951–4960. [Google Scholar] [CrossRef]
- Kriegeskorte, N. Deep neural networks: A new framework for modelling biological vision and brain information processing. bioRxiv 2015. [Google Scholar] [CrossRef]
- Le Cun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems 2; Touretzky, D.S., Ed.; Morgan-Kaufmann: Berlington, MA, USA, 1990; pp. 396–404. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Perronnin, F.; Larlus, D. Fisher vectors meet neural networks: A hybrid classification architecture. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3743–3752. [Google Scholar] [CrossRef]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Fisher networks for large-scale image classification. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), Lake Tahoe, NV, USA, 5–10 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; Volume 1, pp. 163–171. [Google Scholar]
- Arandjelovic, R.; Gronát, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ng, J.; Yang, F.; Davis, L.S. Exploiting local features from deep networks for image retrieval. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Cimpoi, M.; Maji, S.; Kokkinos, I.; Vedaldi, A. Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 2016, 118, 65–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diba, A.; Pazandeh, A.M.; Gool, L.V. Deep visual words: Improved Fisher vector for image classification. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 186–189. [Google Scholar] [CrossRef]
- Li, E.; Xia, J.; Du, P.; Lin, C.; Samat, A. Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [Google Scholar] [CrossRef]
- Julesz, B.B.; Gilbert, E.N.; Shepp, L.A.; Frisch, H.L. Perception. Inability of humans to discriminate between visual textures that agree in second-order statistics-revisited. Perception 1973, 2, 391–405. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. NeuroComputing 2013, 112, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Said, S.; Bombrun, L.; Berthoumieu, Y. Texture classification using Rao’s distance on the space of covariance matrices. In Proceedings of the Geometric Science of Information, Palaiseau, France, 28–30 October 2015; Volume 9389, pp. 371–378. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.; Fowlkes, C. Low-rank Bilinear Pooling for Fine-Grained Classification. arXiv 2016, arXiv:cs.CV/1611.05109. [Google Scholar]
- Yuan, C.; Hu, W.; Li, X.; Maybank, S.; Luo, G. Human action recognition under log-Euclidean Riemannian metric. In Proceedings of the Computer Vision—ACCV 2009: 9th Asian Conference on Computer Vision, Xi’an, China, 23–27 September 2009; pp. 343–353. [Google Scholar] [CrossRef]
- Faraki, M.; Palhang, M.; Sanderson, C. Log-Euclidean bag of words for human action recognition. IET Comput. Vis. 2015, 9, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Faraki, M.; Harandi, M.T.; Wiliem, A.; Lovell, B.C. Fisher tensors for classifying human epithelial cells. Pattern Recognit. 2014, 47, 2348–2359. [Google Scholar] [CrossRef]
- Akodad, S.; Bombrun, L.; Yaacoub, C.; Berthoumieu, Y.; Germain, C. Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors. In Proceedings of the International Conference on Image Processing Theory, Tools and Applications (IPTA), Xi’an, China, 7–10 November 2018. [Google Scholar]
- Ilea, I.; Bombrun, L.; Germain, C.; Terebes, R.; Borda, M.; Berthoumieu, Y. Texture image classification with Riemannian Fisher vectors. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 3543–3547. [Google Scholar]
- Ilea, I.; Bombrun, L.; Said, S.; Berthoumieu, Y. Covariance matrices encoding based on the log-Euclidean and affine invariant Riemannian metrics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 506–515. [Google Scholar] [CrossRef] [Green Version]
- Ilea, I.; Bombrun, L.; Said, S.; Berthoumieu, Y. Fisher vector coding for covariance matrix descriptors based on the log-Euclidean and affine invariant Riemannian metrics. J. Imaging 2018, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 2006, 56, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, C.; Vantzos, O.; Sminchisescu, C. Matrix backpropagation for deep networks with structured layers. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2965–2973. [Google Scholar]
- Cai, S.; Zuo, W.; Zhang, L. Higher-Order Integration of Hierarchical Convolutional Activations for Fine-Grained Visual Categorization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 511–520. [Google Scholar]
- He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [Google Scholar] [CrossRef]
- Huang, Z.; Gool, L.V. A Riemannian network for SPD matrix learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 2036–2042. [Google Scholar]
- Yu, K.; Salzmann, M. Second-order convolutional neural networks. arXiv 2017, arXiv:1703.06817. [Google Scholar]
- Acharya, D.; Huang, Z.; Paudel, D.P.; Van Gool, L. Covariance pooling for facial expression recognition. arXiv 2018, arXiv:1805.04855. [Google Scholar]
- Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global second-order pooling convolutional networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3019–3028. [Google Scholar]
- He, N.; Fang, L.; Li, S.; Plaza, J.; Plaza, A. Skip-connected covariance network for remote sensing scene classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. BigEarthNet: A large-scale benchmark archive for remote sensing image understanding. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Souleyman, C.; Larabi, M.; Gu, Y.; Bakhti, K.; Karoui, M.S. Very High Resolution Image Scene Classification with Capsule Network. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional neural network for remote-sensing scene classification: Transfer learning analysis. Remote Sens. 2019, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Akodad, S.; Vilfroy, S.; Bombrun, L.; Cavalcante, C.C.; Germain, C.; Berthoumieu, Y. An ensemble learning approach for the classification of remote sensing scenes based on covariance pooling of CNN features. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Rosu, R.; Donias, M.; Bombrun, L.; Said, S.; Regniers, O.; Da Costa, J.P. Structure tensor Riemannian statistical models for CBIR and classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 248–260. [Google Scholar] [CrossRef]
- Pham, M.T.; Mercier, G.; Bombrun, L. Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance. J. Imaging 2017, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Pennec, X.; Fillard, P.; Ayache, N. A Riemannian framework for tensor computing. Int. J. Comput. Vis. 2006, 66, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.T. Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Trans. Signal Proces. 2005, 53, 1610–1630. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.R. Fisher discriminant analysis with kernels. In Proceedings of the Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), Madison, WI, USA, 25 August 1999; pp. 41–48. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and Spatial Extensions for Land-use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS ’10), San Jose, CA, USA, 2–5 November 2010; ACM: New York, NY, USA, 2010; pp. 270–279. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. arXiv 2014, arXiv:1405.3531. [Google Scholar]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D. Dynamic classifier selection: Recent advances and perspectives. Inf. Fusion 2018, 41, 195–216. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, Y.; Xia, G.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2108–2123. [Google Scholar] [CrossRef]
- Regniers, O.; Bombrun, L.; Guyon, D.; Samalens, J.C.; Germain, C. Wavelet-based texture features for the classification of age classes in a maritime pine forest. IEEE Geosc. Remote Sens. Lett. 2015, 12, 621–625. [Google Scholar] [CrossRef]
- Regniers, O.; Bombrun, L.; Lafon, V.; Germain, C. Supervised classification of very high resolution optical images using wavelet-based textural features. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3722–3735. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
Method | K = 10 | K = 30 | K = 60 |
---|---|---|---|
Hybrid LE FV (conv 1) | 60.5 ± 1.0% | 61.2 ± 0.8% | 61.2 ± 0.8% |
Method | |||||
---|---|---|---|---|---|
Ens. Hybrid LE FV | 63.7 ± 0.6% | 64.0 ± 0.3% | 64.0 ± 0.3% | 63.9 ± 0.1% | 64.0 ± 0.5% |
Method | Conv 1 | Conv 2 |
---|---|---|
Hybrid FV [20] | 41.4 ± 0.2% | 43.7 ± 1.1% |
Hybrid LE FV [28] | 61.2 ± 0.8% | 65.1 ± 1.6% |
Ens. Hybrid LE FV | 62.4 ± 0.9% | 68.1 ± 1.7% |
Method | OA (Mean ± sd) |
---|---|
FV (SIFT) [5] | 62.3 ± 1.1% |
CNN (vgg-vd-16 fine-tuned) | 62.7 ± 1.8% |
CNN (vgg-vd-16 feat. extraction + SVM) [54] | 82.7 ± 0.6% |
MSCP (vgg-vd-16) [35] | 86.3 ± 1.0% |
ELCP (vgg-vd-16) | 88.4 ± 1.4% |
Database | Method | OA (Mean ± sd) |
---|---|---|
Ens. Hybrid LE FV (conv1) | 62.4 ± 0.9% | |
UC Merced | Ens. Hybrid LE FV (conv2) | 68.1 ± 1.7% |
ELCP | 88.4 ± 1.4% | |
Fusion Ens. Hybrid LE FV-ELCP (MV) | 88.2 ± 1.2% | |
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) | 88.7 ± 1.1% |
Dataset | Resolution (m) | Classes | Images | Image Size | Image Type |
---|---|---|---|---|---|
SIRI-WHU | 2 | 12 | 2400 | 200 × 200 | Aerial |
Maritime pine forests | 0.5 | 4 | 471 | 256 × 256 | Satellite (Pléiades) |
Oyster racks | 0.5 | 5 | 371 | 128 × 128 | Satellite (Pléiades) |
AID | 2 | 30 | 10,000 | 600 × 600 | Aerial |
Database | Method | OA (Mean ± sd) |
---|---|---|
Ens. Hybrid LE FV (conv1) | 70.0 ± 0.8% | |
SIRI-WHU | Ens. Hybrid LE FV (conv2) | 79.1 ± 0.9% |
ELCP | 88.3 ± 1.2% | |
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) | 89.9 ± 1.6% | |
Ens. Hybrid LE FV (conv1) | 86.5 ± 2.2% | |
Maritime pine forest | Ens. Hybrid LE FV (conv2) | 85.7 ± 0.4% |
ELCP | 87.8 ± 2.3% | |
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) | 89.1 ± 1.3% | |
Ens. Hybrid LE FV (conv1) | 84. 1 ± 2.4% | |
Oyster racks | Ens. Hybrid LE FV (conv2) | 86.1 ± 1.1% |
ELCP | 85.7 ± 1.4% | |
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) | 86.4 ± 1.4% | |
Ens. Hybrid LE FV (conv1) | 67.4 ± 0.4% | |
AID | Ens. Hybrid LE FV (conv2) | 70.9 ± 0.2% |
ELCP | 87.6 ± 0.2% | |
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) | 88.7 ± 0.3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akodad, S.; Bombrun, L.; Xia, J.; Berthoumieu, Y.; Germain, C. Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification. Remote Sens. 2020, 12, 3292. https://doi.org/10.3390/rs12203292
Akodad S, Bombrun L, Xia J, Berthoumieu Y, Germain C. Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification. Remote Sensing. 2020; 12(20):3292. https://doi.org/10.3390/rs12203292
Chicago/Turabian StyleAkodad, Sara, Lionel Bombrun, Junshi Xia, Yannick Berthoumieu, and Christian Germain. 2020. "Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification" Remote Sensing 12, no. 20: 3292. https://doi.org/10.3390/rs12203292
APA StyleAkodad, S., Bombrun, L., Xia, J., Berthoumieu, Y., & Germain, C. (2020). Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification. Remote Sensing, 12(20), 3292. https://doi.org/10.3390/rs12203292