Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India
<p>District wise extent, elevation variation, and location of the study area.</p> "> Figure 2
<p>Indian Meteorological Department (IMD)-based long-term average monthly temperature and precipitation in Marathwada.</p> "> Figure 3
<p>Sample land use land cover map (the year 2002) derived from Moderate Resolution Imaging Spectroradiometer (MODIS).</p> "> Figure 4
<p>The general flow of methodology followed for this study.</p> "> Figure 5
<p>Spatio-temporal representation of method II-based number of extreme drought events (months of the highest number of drought frequencies) that occurred between 2001 to 2018.</p> "> Figure 6
<p>Correlation coefficient values (highest and lowest average months) between results of CDI_M, derived from Method-I and Method-II (bottom right values of each month indicates the average correlation coefficient value over the study area)<b>.</b></p> "> Figure 7
<p>Comparative analysis of pure standardized precipitation index (SPI) vs. combined drought indicator for Marathwada (CDI_M) based drought maps for 2002, 2009, and 2015. The maps in the top row show pure SPI (<b>a</b>) whereas the bottow row show CDI_M where SPI contributed 40% (<b>b</b>).</p> "> Figure 8
<p>Trends in CDI_M over the monsoon months.</p> "> Figure 9
<p>PCA-based CDI_M maps for the year 2015–16.</p> "> Figure 10
<p>Monthly trends (statistical p-value) in PCA-based CDI_M (bottom right value represents the percentage-wise area with a significant change in the CDI_M, and bottom left numbers indicate the average p-value).</p> "> Figure 11
<p>Original and detrended crop yield pattern of Maize crop.</p> "> Figure 12
<p>Spatio-temporal representation of CDI_M values over the Rabi season in the Marathwada (bottom right value indicate the monthly average CDI_M over the study area).</p> "> Figure 13
<p>Spatial variations in the correlation of Rabi crop yields in Marathwada and CDI_M values.</p> "> Figure 14
<p>Spatio-temporal representation of CDI_M values over the Kharif season in the Marathwada (bottom right value indicate the monthly average CDI_M over the study area).</p> "> Figure 15
<p>Spatial variations in the correlation coefficient values between Kharif crop yields and CDI_M in Marathwada.</p> "> Figure A1
<p>Spatio-temporal representation of Method-II-based number of ‘extreme drought’ events that occurred between 2001 to 2018.</p> "> Figure A2
<p>Correlation coefficient values between results of CDI_M, derived from Method-I and Method-II (bottom right values of each month indicates the average correlation coefficient value over the study area).</p> "> Figure A3
<p>The sample (June month) spatial pattern of percent contribution of land surface temperature (LST), SPI, normalized difference vegetation index (NDVI), and soil moisture (SM) over the Marathwada.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. SPI (CHIRPS Data)
3.1.2. LST (NOAH Data)
3.1.3. NDVI (MODIS Data)
3.1.4. SM (NOAH Data)
3.1.5. LULC (MODIS Data)
3.1.6. Crop Yield data
3.2. Methodology
- X = particular value of a parameter from the group
- μ = long-term mean
- δ = long-term standard deviation
3.2.1. Expert Judgment-Based Percentage Weights (Method-I)
3.2.2. PCA-Based Weights (Method-II)
3.2.3. Evaluation of the CDI_M Based on Crop Yield
4. Results and Discussion
4.1. CDI_M-Based Spatio-Temporal Drought Analysis—Method-I
4.2. CDI_M-Based Spatio-Temporal Drought Analysis—Method-II
4.3. CDI_M and Its Relation with Crop Yield
4.3.1. Rabi Season
4.3.2. Kharif Season
4.4. Limitations and Future Recommendations
5. Conclusions
- Both of the CDI_M methods (fixed weight-based and PCA-dependent) were accurately able to identify the spatiotemporal extent of drought or nondrought events along with an enhanced trend in the number of drought occurrences for the period 2001 to 2018.
- The years 2002, 2009, 2015 (monsoon and postmonsoon), and 2016 (premonsoon) were identified as the severe drought spans over the study area. In these years, nearly 40% of the Marathwada experienced moderate to extremely dry conditions.
- Adjoining years (2003 and 2016) of most of the extreme dry spells (2002 and 2015) experienced similar drought characteristics that lingered from the extreme drought events (e.g., January 2003, 2016).
- Both methods have observed an increasing trend in CDI_M values. In April, the upwelling trends in the CDI_M were statistically significant, over 66% of Marathwada, followed by 26% in October. These rising trends in CDI_M are of major concern for agriculture going forward.
- Compared to the fixed weighted-based CDI_M, PCA-dependent CDI_M indicated a higher association with the major crop yields in Marathwada. During drought years, in particular, the PCA-based CDI_M held a significant relationship with crop yields (r > 0.7 for jowar and wheat).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Water Risk Filter Germany 2019. Drought Risk the Global Thirst for Water in the Era of Climate Crisis. Available online: https://waterriskfilter.panda.org/en/Explore/WaterRiskReports (accessed on 6 April 2020).
- Kogan, F.; Guo, W.; Yang, W. Drought and food security prediction from NOAA new generation of operational satellites. Geomat. Nat. Hazards Risk 2019, 10, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Africa Renewal. Drought in Ethiopia: 10 Million People in Need. Available online: https://www.un.org/africarenewal/news/drought-ethiopia-10-million-people-need (accessed on 8 April 2020).
- Svoboda, M.; Lecomte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Belal, A.A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques. Arab. J. Geosci. 2014, 7, 35–53. [Google Scholar] [CrossRef]
- Kumar, K.; Rajeevan, M.; Pai, D.; Srivastava, A.; Preethi, B. On the observed variability of monsoon droughts over India. Weather Clim. Extrem. 2013, 1, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.; Mishra, V. Integrated Drought Index (IDI) for drought monitoring and assessment in India. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Bhalme, H.N.; Mooley, D.A. Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Raman, C.; Rao, Y. Blocking highs over Asia and monsoon droughts over India. Nature 1981, 289, 271–273. [Google Scholar] [CrossRef]
- Parthasarathy, B.; Sontakke, N.; Monot, A.; Kothawale, D. Droughts/floods in the summer monsoon season over different meteorological subdivisions of India for the period 1871–1984. Int. J. Climatol. 1987, 7, 57–70. [Google Scholar] [CrossRef]
- Guhathakurta, P. Droughts in districts of India during the recent all India normal monsoon years and its probability of occurrence. Mausam 2003, 54, 542–544. [Google Scholar]
- Mahajan, D.R.; Dodamani, B.M. Spatial and temporal drought analysis in the Krishna river basin of Maharashtra, India. Cogent Eng. 2016, 3, 1185926. [Google Scholar] [CrossRef]
- Pai, D.; Sridhar, L.; Guhathakurta, P.; Hatwar, H. District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Nat. Hazards 2011, 59, 1797–1813. [Google Scholar] [CrossRef]
- Kulkarni, S.; Gedam, S. Geospatial Approach to Categorize and Compare the Agro-Climatological Droughts Over Marathwada Region of Maharashtra, India. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Kripalani, R.; Kulkarni, A. Assessing the impacts of El Niño and non-El Niño-related droughts over India. Drought Netw. News (1994–2001) 1996, 24, 11–13. [Google Scholar]
- Kumar, K.K.; Rajagopalan, B.; Hoerling, M.; Bates, G.; Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 2006, 314, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aadhar, S.; Mishra, V. Impact of Climate Change on Drought Frequency over India; Ministry of Environment, Forest and Climate Change: Delhi, India, 2018.
- Patel, N.; Anapashsha, R.; Kumar, S.; Saha, S.; Dadhwal, V. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2009, 30, 23. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.; Kogan, F. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and variability of droughts over the Indian monsoon region. Weather Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Aadhar, S.; Mishra, V. Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates. J. Hydrometeorol. 2020. [CrossRef] [Green Version]
- Sharma, S.; Mujumdar, P. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economic Survey. Report Summary Economic Survey 2019–20. Available online: https://www.prsindia.org/sites/default/files/parliament_or_policy_pdfs/Economic%20Survey%202019-20%20Summary.pdf (accessed on 18 April 2020).
- Mallegowda, P.; Rengaian, G.; Krishnan, J.; Niphadkar, M. Assessing habitat quality of forest-corridors through NDVI analysis in dry tropical forests of south India: Implications for conservation. Remote Sens. 2015, 7, 1619–1639. [Google Scholar] [CrossRef] [Green Version]
- Saikia, A. NDVI variability in North East India. Scott. Geogr. J. 2009, 125, 195–213. [Google Scholar] [CrossRef]
- Patel, N.; Yadav, K. Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Nat. Hazards 2015, 77, 663–677. [Google Scholar] [CrossRef]
- Patel, N.; Parida, B.; Venus, V.; Saha, S.; Dadhwal, V. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environ. Monit. Assess. 2012, 184, 7153–7163. [Google Scholar] [CrossRef]
- Murthy, C.; Sesha Sai, M.; Kumari, V.B.; Roy, P. Agricultural drought assessment at disaggregated level using AWiFS/WiFS data of Indian Remote Sensing satellites. Geocarto Int. 2007, 22, 127–140. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Tadesse, T.; Brown, J.F.; Callahan, K.; Swain, S.; Hunt, E. Vegetation Drought Response Index: An Integration of Satellite, Climate, and Biophysical Data. In Remote Sensing of Drought: Innovative Monitoring Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; CPC Press: Boca Raton, FL, USA, 2012; pp. 51–74. [Google Scholar]
- Wu, H.; Wilhite, D.A. An operational agricultural drought risk assessment model for Nebraska, USA. Nat. Hazards 2004, 33, 1–21. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Nam, W.-H.; Tadesse, T.; Wardlow, B.D.; Hayes, M.J.; Svoboda, M.D.; Hong, E.-M.; Pachepsky, Y.A.; Jang, M.-W. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. Int. J. Remote Sens. 2018, 39, 1548–1574. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Imani, Y.; Lahlou, O.; Bennasser Alaoui, S.; Naumann, G.; Barbosa, P.; Vogt, J. Drought vulnerability assesssment and mapping in Morocco. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Enenkel, M.; Steiner, C.; Mistelbauer, T.; Dorigo, W.; Wagner, W.; See, L.; Atzberger, C.; Schneider, S.; Rogenhofer, E. A combined satellite-derived drought indicator to support humanitarian aid organizations. Remote Sens. 2016, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Obringer, R.; Wei, C.; Chen, N.; Niyogi, D. Droughts in India from 1981 to 2013 and Implications to Wheat Production. Sci. Rep. 2017, 7, 44552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, S.S.; Bhattacharya, B.K.; Nigam, R.; Guhathakurta, P.; Ghosh, K.; Chattopadhyay, N.; Gairola, R.M. A combined deficit index for regional agricultural drought assessment over semi-arid tract of India using geostationary meteorological satellite data. Int. J. Appl. Earth Obs. 2015, 39, 28–39. [Google Scholar] [CrossRef]
- Subash, N.; Mohan, H.R. A simple rationally integrated drought indicator for rice–wheat productivity. Water Resour. Manag. 2011, 25, 2425–2447. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Patel, N.R. Spatio-temporal variation in terminal drought over western India using dryness index derived from long-term MODIS data. Ecol. Inform. 2016, 32, 28–38. [Google Scholar] [CrossRef]
- Kulkarni, A.; Gadgil, S.; Patwardhan, S. Monsoon variability, the 2015 Marathwada drought and rainfed agriculture. Curr. Sci. 2016, 111, 1182–1193. [Google Scholar] [CrossRef]
- Swain, S.; Patel, P.; Nandi, S. Application of SPI, EDI and PNPI using MSWEP precipitation data over Marathwada, India. In Proceedings of the 2017 IEEE International geoscience and remote sensing symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Purandare, P. Water governance and droughts in Marathwada. Econ. Political Wkly. 2013, 18–21. [Google Scholar]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Hassan, Q.K. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. J. Arid Land 2017, 9, 319–330. [Google Scholar] [CrossRef]
- Bayissa, Y.A.; Tadesse, T.; Svoboda, M.; Wardlow, B.; Poulsen, C.; Swigart, J.; Van Andel, S.J. Developing a satellite-based combined drought indicator to monitor agricultural drought: A case study for Ethiopia. GISci. Remote Sens. 2019, 56, 718–748. [Google Scholar] [CrossRef]
- India Meteorological Department. Monthly Rainfall and Temperature Datasets. Available online: https://mausam.imd.gov.in/ (accessed on 5 March 2020).
- P. D. Government of Maharashtra. Economic Survey of Maharashtra 2019–20. Available online: https://mahades.maharashtra.gov.in/ (accessed on 22 March 2020).
- Srivastava, A.; Rajeevan, M.; Kshirsagar, S. Role of the ITCZ over the north Indian Ocean and Pre-Mei-Yu front in modulating July rainfall over India. J. Clim. 2004, 17, 673–678. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Z.; Wang, P.; Li, X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteor. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Choudhury, B.J. Satellite remote sensing of drought conditions. Remote Sens. Environ. 1987, 23, 243–251. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Higgins, R.W.; Van den Dool, H.M. Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett. 2003, 30, 1241. [Google Scholar] [CrossRef] [Green Version]
- Sulla- Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018; pp. 1–18.
- Government of India. Open Government Data Platform INDIA. Available online: https://data.gov.in/ (accessed on 12 March 2020).
- Watson, D.F.; Philip, G. A refinement of inverse distance weighted interpolation. Geo-Processing 1985, 2, 315–327. [Google Scholar]
- Gebrehiwot, T.; van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int. J. Appl. Earth Obs. 2011, 13, 309–321. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Meshram, S.; Sharma, S. Prioritization of watershed through morphometric parameters: A PCA-based approach. Appl. Water. Sci. 2017, 1505–1519. [Google Scholar] [CrossRef] [Green Version]
- Somkuti, P.; Boesch, H.; Natraj, V.; Kopparla, P. Application of a PCA-Based Fast Radiative Transfer Model to XCO2 Retrievals in the Shortwave Infrared. J. Geophys. Res. Atmos. 2017, 122, 10477–10496. [Google Scholar] [CrossRef]
- Keyantash, J.A.; Dracup, J.A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Q.; Sun, P.; Song, C. Impact of Droughts on Winter Wheat Yield in Different Growth Stages during 2001–2016 in Eastern China. Int. J. Disaster Risk Sci. 2018, 9, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Sur, C.; Perk, S.Y.; Kim, T.W.; Lee, J.H. Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables. KSCE J. Civ. Eng. 2019, 23, 5244–5256. [Google Scholar] [CrossRef]
- Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch. Environ. Res. Risk Assess. 2020, 1–18. [Google Scholar] [CrossRef]
- Latha, R.; Vinayak, B.; Murthy, B. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station. J. Environ. Manag. 2018, 206, 1224–1232. [Google Scholar] [CrossRef]
- Hong, X.; Guo, S.; Xiong, L.; Liu, Z. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: A case study in Poyang Lake basin, China. Theor. Appl. Climatol. 2015, 122, 543–556. [Google Scholar] [CrossRef]
- Aghakouchak, A. Entropy–Copula in Hydrology and Climatology. J. Hydrometeor. 2014, 15, 2176–2189. [Google Scholar] [CrossRef]
- Kavianpour, M.; Seyedabadi, M.; Moazami, S. Spatial and temporal analysis of drought based on a combined index using copula. Environ. Earth Sci. 2018, 77, 769. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A review of environmental droughts: Increased risk under global warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
Data | Period | Temporal Scale | Data Source |
---|---|---|---|
Rainfall | 2001 to 2018 (Long term (1981 to 2018) monthly data were referred to compute the monthly SPI values from 2001 to 2018) | Monthly(further used to calculate SPI-3) | https://www.chc.ucsb.edu/data/chirps |
LST | 2001 to 2018 | Monthly | https://ldas.gsfc.nasa.gov/gldas |
SM | 2001 to 2018 | Monthly | https://ldas.gsfc.nasa.gov/gldas |
NDVI | 2001 to 2018 | Monthly | https://modis.gsfc.nasa.gov/data/dataprod/mod13.php |
LULC | 2001 to 2018 | Yearly | https://modis.gsfc.nasa.gov/data/dataprod/mod12.php |
Crop Yield | 2001 to 2018 | Season wise | https://data.gov.in/ |
Results | Period | Temporal scale | |
CDI_M | 2001 to 2018 | Monthly | |
CDI_M vs. Crop Yield | 2001 to 2018 | Monthly |
LULC Class | Area Covered (%) |
---|---|
Croplands | 95.93 |
Urban and Built-up Lands | 1.7276 |
Water Bodies | 0.8419 |
Savanas | 0.8323 |
Grassland | 0.4287 |
Barren, Natural Vegetation Mosaics, Permanent Wetlands, Open Shrublands, and Mixed and Deciduous forests | Less than 0.40 |
CDI Values | Drought Category | CDI Values | Drought Category |
---|---|---|---|
2 or more | Extremely Wet | 0 to −0.99 | Mildly Dry |
1.5 to 1.99 | Severely Wet | −1.0 to −1.49 | Moderately Dry |
1.0 to 1.49 | Moderately Wet | −1.50 to −1.99 | Severely Dry |
0 to 0.99 | Mildly Wet | −2 or less | Extremely Dry |
Area under Severe to Extreme Drought (%) during the Monsoon Months | ||||
---|---|---|---|---|
Year | 2002 | 2009 | 2015 | |
Month | ||||
June | 3.71% | 79.11% | 0% | |
July | 53.59% | 42.07% | 82.17% | |
August | 0.15% | 25.41% | 57.24% | |
September | 7.15% | 10.39% | 20.64% |
Months | LST | NDVI | SM | SPI |
---|---|---|---|---|
JAN | 0.32 | 0.19 | 0.40 | 0.09 |
FEB | 0.31 | 0.19 | 0.25 | 0.25 |
MAR | 0.18 | 0.27 | 0.30 | 0.25 |
APR | 0.14 | 0.34 | 0.36 | 0.18 |
MAY | 0.23 | 0.19 | 0.31 | 0.28 |
JUN | 0.28 | 0.10 | 0.32 | 0.30 |
JUL | 0.33 | 0.07 | 0.36 | 0.24 |
AUG | 0.34 | 0.10 | 0.43 | 0.13 |
SEP | 0.27 | 0.06 | 0.41 | 0.27 |
OCT | 0.26 | 0.16 | 0.37 | 0.22 |
NOV | 0.13 | 0.30 | 0.40 | 0.17 |
DEC | 0.27 | 0.29 | 0.35 | 0.09 |
Rabi Crops | R | Regression Equation |
---|---|---|
Jowar | 0.79 | Jowar Yield = 0.184(CDI) + 0.603 |
Wheat | 0.76 | Wheat Yield = 0.334(CDI) + 0.982 |
Maize | 0.63 | Maize Yield = 0.182(CDI) + 0.942 |
Kharif Crops | R | Regression Equation |
---|---|---|
Jowar | 0.57 | Jowar Yield = 0.395(CDI) + 1.178 |
Cotton | 0.67 | Bajra Yield = 0.226(CDI) + 0.743 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, S.S.; Wardlow, B.D.; Bayissa, Y.A.; Tadesse, T.; Svoboda, M.D.; Gedam, S.S. Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sens. 2020, 12, 2091. https://doi.org/10.3390/rs12132091
Kulkarni SS, Wardlow BD, Bayissa YA, Tadesse T, Svoboda MD, Gedam SS. Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sensing. 2020; 12(13):2091. https://doi.org/10.3390/rs12132091
Chicago/Turabian StyleKulkarni, Sneha S., Brian D. Wardlow, Yared A. Bayissa, Tsegaye Tadesse, Mark D. Svoboda, and Shirishkumar S. Gedam. 2020. "Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India" Remote Sensing 12, no. 13: 2091. https://doi.org/10.3390/rs12132091
APA StyleKulkarni, S. S., Wardlow, B. D., Bayissa, Y. A., Tadesse, T., Svoboda, M. D., & Gedam, S. S. (2020). Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sensing, 12(13), 2091. https://doi.org/10.3390/rs12132091