Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example
"> Figure 1
<p>An overview of methods used in this study.</p> "> Figure 2
<p>(<b>a</b>) Map of Texas with the study site highlighted; (<b>b</b>) a 13-mile Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) transect (GT3R) overlaid on a reference aboveground biomass map (biomass density in Mg/ha) for the study area and showing simulated ICESat-2 tracks (yellow) over the extent of Sam Houston National Forest (SHNF) within the study site. The map uses a gray-scale symbology, where lighter pixels represent higher levels of biomass. Non-forested areas have been masked.</p> "> Figure 3
<p>(<b>a</b>) Profile of raw ICESat-2 (ATL03) data from the strong beam of track 3 (GT3R) over temperate forests in southeast Texas; (<b>b</b>) profile of filtered and classified data from GT3R; (<b>c</b>) raw and processed ICESat-2 data for a subset of the profile from the strong beam of track 3 (GT3R); (<b>d</b>) profile of raw ICESat-2 (ATL03) data from the weak beam of track 3 (GT3L) over temperate forests in southeast Texas; (<b>e</b>) profile of filtered and classified data from GT3L; (<b>f</b>) raw and processed ICESat-2 data for a subset of the profile from the weak beam of track 3 (GT3L) These data were acquired on 3 December 2018; granule ID ATL03_20181203072948_10030106_002_01.</p> "> Figure 3 Cont.
<p>(<b>a</b>) Profile of raw ICESat-2 (ATL03) data from the strong beam of track 3 (GT3R) over temperate forests in southeast Texas; (<b>b</b>) profile of filtered and classified data from GT3R; (<b>c</b>) raw and processed ICESat-2 data for a subset of the profile from the strong beam of track 3 (GT3R); (<b>d</b>) profile of raw ICESat-2 (ATL03) data from the weak beam of track 3 (GT3L) over temperate forests in southeast Texas; (<b>e</b>) profile of filtered and classified data from GT3L; (<b>f</b>) raw and processed ICESat-2 data for a subset of the profile from the weak beam of track 3 (GT3L) These data were acquired on 3 December 2018; granule ID ATL03_20181203072948_10030106_002_01.</p> "> Figure 4
<p>(<b>a</b>) Reference AGB versus ICESat-2-predicted AGB (Mg/ha) with training data, for the strong beam; (<b>b</b>) reference AGB versus ICESat-2-predicted AGB (Mg/ha) with test data, for the strong beam; (<b>c</b>) reference AGB versus ICESat-2-predicted AGB (Mg/ha) with training data, for the weak beam; (<b>d</b>) reference AGB versus ICESat-2-predicted AGB (Mg/ha) with test data, for the weak beam. The solid black line in each graph is the 1:1 line.</p> "> Figure 5
<p>Scatterplot showing the relationship between ICESat-2 derived AGB and random forest (RF) predicted AGB with test data.</p> "> Figure 6
<p>(<b>a</b>) Map of study area showing ICESat-2 transect analyzed, overlaid on 2016 natural color National Agriculture Imagery Program (NAIP) imagery; (<b>b</b>) predicted AGB density for the study area (30 m grid size).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Aboveground Biomass (AGB) Map
2.3. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) Data and Processing
2.4. AGB Estimation with ICESat-2
2.5. Mapping AGB with ICESat-2 and Landsat 8 Operational Land Imager (OLI)
3. Results
3.1. AGB Estimation Models with ICESat-2
3.2. ICESat-2 to Landsat Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, F.G.; Bergen, K.; Blair, J.B.; Dubayah, R.; Houghton, R.; Hurtt, G.; Kellndorfer, J.; Lefsky, M.; Ranson, J.; Saatchi, S.; et al. Characterizing 3D vegetation structure from space: Mission requirements. Remote Sens. Environ. 2011, 115, 2753–2775. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37, 5. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 2011, 116, 12. [Google Scholar] [CrossRef]
- Chi, H.; Sun, G.Q.; Huang, J.L.; Guo, Z.F.; Ni, W.J.; Fu, A.M. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sens. 2015, 7, 5534–5564. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. Remote Sens. 2016, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.B.; Wang, C.; Pan, F.F.; Nie, S.; Xi, X.H.; Luo, S.Z. Retrieving leaf area index in discontinuous forest using ICESat/GLAS full-waveform data based on gap fraction model. ISPRS J. Photogramm. Remote Sens. 2019, 148, 54–62. [Google Scholar] [CrossRef]
- Pourrahmati, M.R.; Baghdadi, N.N.; Darvishsefat, A.A.; Namiranian, M.; Fayad, I.; Bailly, J.; Gond, V. Capability of GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5246–5261. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, A.L.; Magruder, L.A. The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems. Remote Sens. 2016, 8, 1039. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K.M. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens. Environ. 2018, 208, 154–170. [Google Scholar] [CrossRef]
- Gwenzi, D.; Lefsky, M.A.; Suchdeo, V.P.; Harding, D.J. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS J. Photogramm. Remote Sens. 2016, 118, 68–82. [Google Scholar] [CrossRef]
- Glenn, N.F.; Neuenschwander, A.; Vierling, L.A.; Spaete, L.; Li, A.H.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sens. Environ. 2016, 185, 233–242. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and Terrain Height Retrievals with ICESat-2: A First Look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning. Remote Sens. 2019, 11, 1503. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Zhou, T.; Srinivasan, S.; Harbeck, K. Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data. Ann. For. Res. 2019, 62. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- MRLC. Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/ (accessed on 3 June 2020).
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H. Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Snyder, K.A.; Huntington, J.L.; Wehan, B.L.; Morton, C.G.; Stringham, T.K. Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin. Sensors 2019, 19, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikasari, I.H.; Ayumi, V.; Fanany, M.I.; Mulyono, S. Multiple Regularizations Deep Learning for Paddy Growth Stages Classification from LANDSAT-8. In Proceedings of the 2016 International Conference on Advanced Computer Science and Information Systems, Malang, Indonesia, 15–16 October 2016; IEEE: New York, NY, USA, 2016; pp. 512–517. [Google Scholar]
- Freeman, E.A.; Frescino, T.S.; Moisen, G.G. ModelMap: An R Package for Model Creation and Map Production; USDA Forest Service, Rocky Montains Research Station: Ogden, UT, USA, 2018; p. 69. [Google Scholar]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Luthcke, S.B.; Harbeck, K.; Lee, J.; Gibbons, A.; Saba, J.; Brunt, K.M. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 1; NSIDC: National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Popescu, S.C.; Nelson, R.F.; Harding, D.; Pitts, K.L.; Robbins, J. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 1; NSIDC: National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, M.S.; Abdalati, W.; Scambos, T.; Neuenschwander, A. Applicability of an automatic surface detection approach to micropulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data. Int. J. Remote Sens. 2014, 35, 5263–5279. [Google Scholar] [CrossRef]
- Isenburg, M. LASTools: Award-Winning Software for Rapid LiDAR Processing. Available online: http://lastools.org/ (accessed on 25 February 2020).
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2016.
- Nelson, R.; Margolis, H.; Montesano, P.; Sun, G.; Cook, B.; Corp, L.; Andersen, H.-E.; de Jong, B.; Pellat, F.P.; Fickel, T.; et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens. Environ. 2017, 188, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wöllauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 4757. [Google Scholar] [CrossRef]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Harding, D.J.; Parker, G.G.; Acker, S.A.; Gower, S.T. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 2002, 11, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [Google Scholar] [CrossRef]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks From Space. Curr. For. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M.; et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Saarela, S.; Holm, S.; Healey, S.P.; Andersen, H.-E.; Petersson, H.; Prentius, W.; Patterson, P.L.; Næsset, E.; Gregoire, T.G.; Ståhl, G. Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data. Remote Sens. 2018, 10, 1832. [Google Scholar] [CrossRef] [Green Version]
Independent Variable | Description |
---|---|
Min | Minimum height |
Max | Maximum height |
Mean | Mean height |
P10 | 10th percentile height |
P25 | 25th percentile height |
P50 | 50th percentile height |
P70 | 70th percentile height |
P75 | 75th percentile height |
P80 | 80th percentile height |
P90 | 90th percentile height |
P95 | 95th percentile height |
P99 | 99th percentile height |
C2m | Percentage of all returns above 2m |
Independent Variable | Description |
---|---|
Normalized Difference Vegetation Index (NDVI) | (near infrared (NIR) - Red) / (NIR + Red) |
Enhanced Vegetation Index (EVI) | 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1)) |
Soil Adjusted Vegetation Index (SAVI) | ((NIR - Red) / (NIR + Red + 0.5)) * (1.5) |
Modified Soil Adjusted Vegetation Index (MSAVI) | (2 * NIR + 1 - sqrt ((2 * NIR + 1)2 - 8 * (NIR - Red))) / 2 |
Land cover | Land cover map from the National Land Cover Databased (NLCD) 2016 |
Canopy cover | NLCD 2011 US Forest Service Tree Canopy Cover |
ICESat-2 Beam | Dependent Variable | Predictors | Room Mean Square Error (RMSE) | R2 | Model | ||
---|---|---|---|---|---|---|---|
Training | Test | Training | Test | ||||
Strong beam (GT3R) | AGB (Mg/ha) | Maximum height, mean height, 5th percentile height | 22.15 Mg/ha | 24.91 Mg/ha | 0.61 | 0.60 | 20.56 – 0.26Max + 5.95Mean – 7.14p05 |
Weak beam (GT3L) | AGB (Mg/ha) | Mean height | 33.73 Mg/ha | 35.85 Mg/ha | 0.41 | 0.37 | 11.72 + 4.31Mean |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sens. 2020, 12, 1824. https://doi.org/10.3390/rs12111824
Narine LL, Popescu SC, Malambo L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sensing. 2020; 12(11):1824. https://doi.org/10.3390/rs12111824
Chicago/Turabian StyleNarine, Lana L., Sorin C. Popescu, and Lonesome Malambo. 2020. "Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example" Remote Sensing 12, no. 11: 1824. https://doi.org/10.3390/rs12111824
APA StyleNarine, L. L., Popescu, S. C., & Malambo, L. (2020). Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sensing, 12(11), 1824. https://doi.org/10.3390/rs12111824