Simulating Multi-Directional Narrowband Reflectance of the Earth’s Surface Using ADAM (A Surface Reflectance Database for ESA’s Earth Observation Missions)
"> Figure 1
<p>Spectral variation over the 240–4000 nm range of the (<b>a</b>) mean spectrum <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>E</mi> <mi>O</mi> <mi>F</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> <mo stretchy="false">(</mo> <mi mathvariant="sans-serif">λ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> (the orange stars indicate the values in the MODIS bands <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>E</mi> <mi>O</mi> <mi>F</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="sans-serif">λ</mi> <mrow> <mi>MODIS</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>) and (<b>b</b>) the four eigenvectors considered in the spectral model.</p> "> Figure 2
<p>Ocean column reflectance for eight values of the chlorophyll concentration (0.03, 0.1, 0.3, 0.5, 1, 3, 5, 10 mg.m<sup>−3</sup>) used in the ADAM API toolkit derived from the COART model.</p> "> Figure 3
<p>Illustrative figures generated with ADAM database and API: (left) spectral reflectance variation over the 240–4000 nm range for the months of January and June; (right) directional reflectance variation in the principal plane for different surface types for the month of June. The reflectances are provided for an ensemble of vegetation pixels (<b>a</b>) and (<b>b</b>), one soil pixel (<b>c</b>) and (<b>d</b>), three snow pixels (<b>e</b>) and (<b>f</b>), and an ensemble of ocean pixels (<b>g</b>) and (<b>h</b>). The observation geometries and the areas (defined by minimum and maximum latitude/longitude values) considered for the calculation are as indicated. For the soil pixel (<b>a</b>) and (<b>b</b>), the calculated uncertainties are shown in grey. Red dots in (<b>c</b>) and (<b>e</b>): MODIS-FDS reflectance in the standard viewing and illumination geometry.</p> "> Figure 4
<p>Comparison between the POLDER spectro-directional measurements (year 2008) (x-axis) in the six wavebands of the instrument with ADAM API simulations (representative of year 2005) for the following IGBP classes: IGBP 1—evergreen needleleaf forest (100 pixels), IGBP 2—evergreen broadleaf forest (92 pixels), IGBP 3—deciduous deedleleaf forest (62 pixels), IGBP 4—deciduous broadleaf forest (98 pixels), IGBP 5—mixed forest (98 pixels), IGBP 6—closed shrublands (209 pixels), IGBP 7—open shrublands (417 pixels), IGBP 8—woody savannas (228 pixels), IGBP 9—savannas (256 pixels), IGBP 10—grasslands (325 pixels), IGBP 12—croplands (279 pixels), IGBP 14—cropland/natural vegetation mosaic (159 pixels), IGBP 15—snow and ice (204 pixels), IGBP 16—barren or sparsely vegetated (559 pixels). The values of the root mean square difference (RMSD) and determination coefficient (R<sup>2</sup>) are provided.</p> "> Figure 5
<p>Mean square deviation (MSD) between POLDER reflectance data and ADAM simulation decomposed into square bias (SB), magnitude fluctuation differences (SDSD), and lack of correlation (LCS) according to Kobayashi and Salam [<a href="#B73-remotesensing-12-01679" class="html-bibr">73</a>] (see Equation (21)) for (<b>a</b>) the soil and vegetation IGBP classes and (<b>b</b>) snow and ice pixels.</p> "> Figure 6
<p>Histograms of the CALIPSO backscatter reflectance against the ADAM reflectance product (illumination and viewing at nadir). Note the log scale for the reflectances. The red line is the 1:1 line (identical values), whereas the blue line shows data positions for a factor of 2 or 0.5 between the two. The points have been classified according to the IGBP land cover classification. For each subplot, the number N (noted in red) indicates the number of matches in the comparison. The colors used in the plots indicate the number of matchups (running from 0 to 100).</p> ">
Abstract
:1. Introduction
- For the soil/vegetation pixels, the spectral interpolation/extrapolation of the MODIS broad-bands/normalized reflectances between 240 and 4000 nm is performed using empirical orthogonal functions (EOFs) derived from spectral reflectance databases of soil/vegetation/leaf optical properties (similar to [1]). The Ross–Li-HS kernel based BRDF model [35] is used to calculate the reflectance spectrum in any illumination/observation geometry. A separate processing scheme is applied for snow covered surfaces: It relies on the Asymptotic Radiative Transfer (ART) model [36], fitted to the normalized reflectances, to simulate the spectro-directional variations of snow reflectance. Moreover, it is possible to calculate the uncertainty attached to the land surface reflectance: the calculation relies on the variance covariance matrix of the reflectance values between the seven MODIS bands for each 0.1° × 0.1° pixel.
- Over water surfaces, the reflectance is simulated by a combination of three components: (i) the water column and (ii) foam, that mainly shape reflectance spectral variations, and (iii) the specular reflection that essentially drives reflectance directionality. The water column reflectance is parameterized as a function of the chlorophyll content and specular reflection (also referred to as sunglint), which mostly depends on the wind speed.
2. ADAM Spectral and Directional Calculation Models (API Toolkit)
2.1. Land Surfaces
2.1.1. Vegetation and Soil
Spectral Modeling
Directional Modeling
2.1.2. Snow and Sea Ice
2.2. Water Surfaces (Ocean and Inland Lakes)
- the column reflectance, that has a strong spectral variation but limited directional variation. Here, we consider only waters of Case 1 (using the definition of [46]), corresponding mostly to open ocean (i.e., excluding coastal areas), for which the absorption and scattering properties can be correlated with chlorophyll concentration (chl);
- the specular reflectance, which has a strong directional effect with negligible spectral variation, that mostly depends on the wind speed (ws);
- the foam reflectance, that has limited spectral and directional effects.
2.2.1. Water Column Reflectance
2.2.2. Glint Reflectance
2.2.3. Foam Reflectance
3. Input Data and Processing
3.1. Land
3.2. Ocean
3.2.1. Chlorophyll Content
3.2.2. Wind Speed
3.3. Gap-Filling
3.3.1. Polar Land Regions
3.3.2. Water Surface Products
3.3.3. Sea Ice
3.4. Ancillary Data
3.4.1. Land
3.4.2. Water Surfaces
4. ADAM Products
4.1. ADAM Database Format
4.2. Availability of the ADAM Product and Online Calculation Tools for Plotting
4.3. Representative Simulations with ADAM API and Database
5. Evaluation of the ADAM Product over Land
5.1. Comparison of ADAM with POLDER Multi-Spectral/Multi-Directional Observations
5.1.1. Evaluation Dataset
5.1.2. Methods
5.1.3. Results
5.2. Comparison with CALIPSO Lidar Observations at 532 nm
5.2.1. Rationales
5.2.2. Evaluation Dataset
5.2.3. Methods
5.2.4. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Vidot, J.; Borbás, É. Land surface VIS/NIR BRDF atlas for RTTOV-11: Model and validation against SEVIRI land SAF albedo product: Land Surface VIS/NIR BRDF Atlas for RTTOV-11. Q. J. R. Meteorol. Soc. 2014, 140, 2186–2196. [Google Scholar] [CrossRef]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 192, 14–29. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Kaasalainen, S.; Naranen, J.; Matikainen, L.; Piironen, J. Measurement of directional and spectral signatures of light reflectance by snow. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2294–2304. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Sobrino, J.A.; Fédèle, E. Analysis of directional effects on atmospheric correction. Remote Sens. Environ. 2013, 128, 276–288. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. Atmos. 2008, 113, D23. [Google Scholar] [CrossRef]
- Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Cook, R.B.; SanthanaVannan, S.K.; Vermote, E.F.; Schaaf, C.L. Assessment of biases in MODIS surface reflectance due to Lambertian approximation. Remote Sens. Environ. 2010, 114, 2791–2801. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Chen, L.; Dong, Y.; Zhang, X.; Lian, Y.; Qian, D.; Cui, T. Quantifying the Reflectance Anisotropy Effect on Albedo Retrieval from Remotely Sensed Observations Using Archetypal BRDFs. Remote Sens. 2018, 10, 1628. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- von Hoyningen-Huene, W.; Freitag, M.; Burrows, J.B. Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Mei, L.; Rozanov, V.; Vountas, M.; Burrows, J.P.; Levy, R.C.; Lotz, W. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results. Remote Sens. Environ. 2017, 197, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.-C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12–673. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.; Leitão, J. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef] [Green Version]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef] [Green Version]
- Acarreta, J.R.; De Haan, J.F.; Stammes, P. Cloud pressure retrieval using the O2-O2 absorption band at 477 nm. J. Geophys. Res. Atmos. 2004, 109, D5. [Google Scholar] [CrossRef] [Green Version]
- Koelemeijer, R.B.A.; Stammes, P.; Hovenier, J.W.; de Haan, J. A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment. J. Geophys. Res. Atmos. 2001, 106, 3475–3490. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Vasilkov, A.P. First results from the OMI rotational Raman scattering cloud pressure algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1272–1282. [Google Scholar] [CrossRef]
- Noguchi, K.; Richter, A.; Rozanov, V.; Rozanov, A.; Burrows, J.P.; Irie, H.; Kita, K. Effect of surface BRDF of various land cover types on geostationary observations of tropospheric NO2. Atmos. Meas. Tech. 2014, 7, 3497–3508. [Google Scholar] [CrossRef] [Green Version]
- Lorente, A.; Folkert Boersma, K.; Stammes, P.; Gijsbert Tilstra, L.; Richter, A.; Yu, H.; Kharbouche, S.; Muller, J.-P. The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI. Atmos. Meas. Tech. 2018, 11, 4509–4529. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Brunner, D.; Spurr, R.J.D.; Boersma, K.F.; Sneep, M.; Popp, C.; Buchmann, B. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO2. Atmos. Meas. Tech. 2010, 3, 1185. [Google Scholar] [CrossRef] [Green Version]
- Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval. Atmos. Meas. Tech. 2011, 4, 463–483. [Google Scholar] [CrossRef] [Green Version]
- Vasilkov, A.; Qin, W.; Krotkov, N.; Lamsal, L.; Spurr, R.; Haffner, D.; Joiner, J.; Eun-Su, Y.; Marchenko, S. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: A new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms. Atmos. Meas. Tech. 2017, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.R.; Celarier, E.A. Earth surface reflectivity climatology at 340–380 nm from TOMS data. J. Geophys. Res. Atmos. 1997, 102, 28003–28011. [Google Scholar] [CrossRef]
- Koelemeijer, R.B.A.; De Haan, J.F.; Stammes, P. A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Kleipool, Q.L.; Dobber, M.R.; de Haan, J.; Levelt, P.F. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Tilstra, L.G.; Wang, P.; Stammes, P. Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. J. Geophys. Res. Atmos. 2017, 122, 4084–4111. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Martonchik, J.V.; Diner, D.J.; Pinty, B.; Verstraete, M.M.; Myneni, R.B.; Knyazikhin, Y.; Gordon, H.R. Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1266–1281. [Google Scholar] [CrossRef]
- Muller, J.-P.; López, G.; Watson, G.; Shane, N.; Kennedy, T.; Yuen, P.; Lewis, P.; Fischer, J.; Guanter, L.; Domench, C. The ESA GlobAlbedo Project for mapping the Earth’s land surface albedo for 15 Years from European Sensors. In Proceedings of the EGU, Vienna, Austria, 22–27 April 2012; Volume 13, p. 10969. [Google Scholar]
- Gonzalez, L.; Bréon, F.-M.; Caillault, K.; Briottet, X. A sub km resolution global database of surface reflectance and emissivity based on 10-years of MODIS data. ISPRS J. Photogramm. Remote Sens. 2016, 122, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Bicheron, P.; Leroy, M. Bidirectional reflectance distribution function signatures of major biomes observed from space. J. Geophys. Res. Atmos. 2000, 105, 26669–26681. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Maignan, F. A BRDF–BPDF database for the analysis of Earth target reflectances. Earth Syst. Sci. Data 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Kharbouche, S.; Muller, J.-P.; Lewis, P.E. A 15 Year Climatology of Spectral BRDF Derived from MODIS for a Priori Optimal Estimation of Global Surface Albedo within the EU-FP7 QA4ECV Project; International Symposium on Remote Sensing of the Environment: Berlin, Germany, 2014. [Google Scholar]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Maignan, F.; Bréon, F.-M.; Lacaze, R. Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens. Environ. 2004, 90, 210–220. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Bacour, C.; Gonzalez, L.; Bréon, F.-M. A Surface Reflectance DAtabase for ESA’s Earth Observation Missions (ADAM). Improvement and/or Expension of Existing Surface Datasets—Algorithmic Theoretical Basis Document. Technical Note 4 for ESA Study Contract Nr C4000102979/CCN No6. NOVELTIS: Labège, France, 2019; 109p, Available online: https://adam.noveltis.fr/permalink/NOV-FE-0724-ATBD.pdf (accessed on 15 March 2020).
- Bell, I.E.; Baranoski, G.V. Reducing the dimensionality of plant spectral databases. IEEE Trans. Geosci. Remote Sens. 2004, 42, 570–576. [Google Scholar] [CrossRef]
- Liu, L.; Song, B.; Zhang, S.; Liu, X. A novel principal component analysis method for the reconstruction of leaf reflectance spectra and retrieval of leaf biochemical contents. Remote Sens. 2017, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Mao, Y.; Xu, C.; Li, Z.; Li, D.; Ma, Y.; Xu, H. Study on the spectral reconstruction of typical surface types based on spectral library and principal component analysis. In Proceedings of the Fifth Symposium on Novel Optoelectronic Detection Technology and Application, Xi’an, China, 24–26 October 2018; International Society for Optics and Photonics, 2019; Volume 11023, p. 110232T. [Google Scholar]
- Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Maignan, F.; Leroy, M.; Grant, I. Analysis of hot spot directional signatures measured from space. J. Geophys. Res. Atmos. 2002, 107, AAC-1. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Breon, F.-M. Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations. IEEE Geosci. Remote Sens. Lett. 2012, 9, 928–932. [Google Scholar] [CrossRef]
- Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.-M.; Dong, Y.; Wang, Z.; Liu, v; Zhang, X.; Yin, S. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens. Environ. 2019, 221, 198–209. [Google Scholar] [CrossRef]
- Ding, A.; Jiao, Z.; Dong, Y.; Zhang, X.; Peltoniemi, J.I.; Mei, L.; Guo, J.; Yin, S.; Cui, L.; Chang, Y. Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved the Ross-Roujean BRDF Model. Remote Sens. 2019, 11, 1611. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface. Appl. Opt. 2006, 45, 7443–7455. [Google Scholar] [CrossRef] [PubMed]
- Coupled Ocean and Atmosphere Radiative Transfer (COART). Available online: https://cloudsgate2.larc.nasa.gov/jin/coart.html (accessed on 15 March 2020).
- Bréon, F.M.; Henriot, N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Frouin, R.; Schwindling, M.; Deschamps, P.-Y. Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res. Oceans 1996, 101, 14361–14371. [Google Scholar] [CrossRef]
- Koepke, P. Effective reflectance of oceanic whitecaps. Appl. Opt. 1984, 23, 1816–1824. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A. Spectral reflectance of whitecaps. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Vermote, E.F.; Vermeulen, A. Atmospheric correction algorithm: Spectral reflectances (MOD09). Version 4.0. Algorithm Theor. Basis Doc. NASA EOS-ID 1999, 4, 1–107. [Google Scholar]
- NASA Goddard Space Flight Center, Ocean Biology Processing Group. (2014): Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data. NASA OB.DAAC: Greenbelt, MD, USA, Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD. Available online: https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/chlor_a (accessed on 15 March 2020). [CrossRef]
- Ricciardulli, L.; Wentz, F. Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 geophysical model function. Remote Sens. Syst. Tech. Rep. 2011, 43011. [Google Scholar]
- Remote Sensing Systems QuikScat/SeaWinds Page. Available online: http://www.remss.com/missions/qscat (accessed on 15 March 2020).
- CryoClim Service Documentation Page. Available online: http://www.cryoclim.net/cryoclim/index.php/Service_documentation (accessed on 15 March 2020).
- CryoClim Data Portal. Available online: http://www.cryoclim.net/cryoclim/subsites/data_portal/ (accessed on 15 March 2020).
- Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S. High angular resolution measurements of the anisotropy of reflectance of sea ice and snow. Earth Space Sci. 2018, 5, 30–47. [Google Scholar] [CrossRef] [Green Version]
- DLR Spectral Archive. Available online: http://cocoon.caf.dlr.de/intro_en.html (accessed on 15 March 2020).
- ASTER Spectral Library. Available online: http://speclib.jpl.nasa.gov/ (accessed on 15 March 2020).
- USGS Spectral Database. Available online: http://speclab.cr.usgs.gov/spectral.lib06/ (accessed on 15 March 2020).
- Gerber, F.; Marion, R.; Olioso, A.; Jacquemoud, S.; Da Luz, B.R.; Fabre, S. Modeling directional–hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model. Remote Sens. Environ. 2011, 115, 404–414. [Google Scholar] [CrossRef]
- Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 1984, 23, 1206–1225. [Google Scholar] [CrossRef] [PubMed]
- Refractive Index Database. Available online: http://refractiveindex.info/?group=CRYSTALS&material=H2O-ice (accessed on 15 March 2020).
- Segelstein, D.J. The Complex Refractive index of Water. Ph.D. Thesis, University of Missouri–Kansas City, Kansas City, MO, USA, 1981. [Google Scholar]
- Available online: https://omlc.org/spectra/water/data/segelstein81.txt (accessed on 15 March 2020).
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Refractive Index Database. Available online: http://refractiveindex.info/?group=LIQUIDS&material=Water (accessed on 15 March 2020).
- ESA Earth Observation Portal Database. Available online: https://earth.esa.int (accessed on 15 March 2020).
- ADAM Portal. Available online: https://adam.noveltis.fr (accessed on 15 March 2020).
- Tanré, D.; Bréon, F.M.; Deuzé, J.L.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Salam, M.U. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 2000, 92, 345–352. [Google Scholar] [CrossRef]
- Gauch, H.G.; Hwang, J.T.; Fick, G.W. Model evaluation by comparison of model-based predictions and measured values. Agron. J. 2003, 95, 1442–1446. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacour, C.; Bréon, F.-M.; Gonzalez, L.; Price, I.; Muller, J.-P.; Straume, A.G. Simulating Multi-Directional Narrowband Reflectance of the Earth’s Surface Using ADAM (A Surface Reflectance Database for ESA’s Earth Observation Missions). Remote Sens. 2020, 12, 1679. https://doi.org/10.3390/rs12101679
Bacour C, Bréon F-M, Gonzalez L, Price I, Muller J-P, Straume AG. Simulating Multi-Directional Narrowband Reflectance of the Earth’s Surface Using ADAM (A Surface Reflectance Database for ESA’s Earth Observation Missions). Remote Sensing. 2020; 12(10):1679. https://doi.org/10.3390/rs12101679
Chicago/Turabian StyleBacour, Cédric, François-Marie Bréon, Louis Gonzalez, Ivan Price, Jan-Peter Muller, and Anne Grete Straume. 2020. "Simulating Multi-Directional Narrowband Reflectance of the Earth’s Surface Using ADAM (A Surface Reflectance Database for ESA’s Earth Observation Missions)" Remote Sensing 12, no. 10: 1679. https://doi.org/10.3390/rs12101679
APA StyleBacour, C., Bréon, F. -M., Gonzalez, L., Price, I., Muller, J. -P., & Straume, A. G. (2020). Simulating Multi-Directional Narrowband Reflectance of the Earth’s Surface Using ADAM (A Surface Reflectance Database for ESA’s Earth Observation Missions). Remote Sensing, 12(10), 1679. https://doi.org/10.3390/rs12101679