Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves
"> Figure 1
<p>Flowchart of the study: (<b>a</b>) a brief description of datasets, (<b>b</b>) data analysis (correlation and characteristics) process, and (<b>c</b>) air temperature prediction.</p> "> Figure 2
<p>Relevant information on the study area. (<b>a</b>) Location of 79 Automated Synoptic Observing System (ASOS) weather stations and (<b>b</b>) Resampled land use map.</p> "> Figure 3
<p>Basic LSTM Architecture.</p> "> Figure 4
<p>Boxplots of observed maximum, minimum, and mean SAT (T<sub>MX</sub>, T<sub>MM</sub>, T<sub>MN</sub>, respectively) and four land surface temperatures (LSTs) (LST<sub>TD</sub>, LST<sub>TN</sub>, LST<sub>AD</sub>, LST<sub>AN</sub>) for 79 ASOS stations from 2008 to 2018. Among the four LST datasets, the average for LST<sub>TD</sub> was the highest, similar to the T<sub>MX</sub>, and the LST<sub>TN</sub> average was the closest to the T<sub>MN</sub>. IQR: interquartile range.</p> "> Figure 5
<p>Comparison between (<b>a</b>) daytime MODIS LSTs (LST<sub>TD</sub> and LST<sub>AD</sub>) and T<sub>MX</sub>, (<b>b</b>) nighttime MODIS LSTs (LST<sub>TN</sub> and LST<sub>AN</sub>) and T<sub>MN</sub> for the Chungju weather station of the average year.</p> "> Figure 6
<p>Time series boxplots of (<b>a</b>) T<sub>MN</sub> of 79 ASOS stations during the cold wave period from January 23 to February 13 and (<b>b</b>) T<sub>MX</sub> of 79 ASOS stations during the heat wave period from July 11 to August 16 in 2018 [<a href="#B46-remotesensing-12-03231" class="html-bibr">46</a>].</p> "> Figure 7
<p>Boxplots of (<b>a</b>) observed T<sub>MN</sub> and LST<sub>TN</sub> for 8 land use classes (red: urban, light yellow: paddy, yellow: upland crop, dark green: forest, green: grass, purple: wetland, cyan: bare field, and dark blue: water) on January 27, 2018, and (<b>b</b>) observed T<sub>MX</sub> and LST<sub>AD</sub> on July 20, 2018. In (<b>a</b>), the red solid line on the graph is -12 °C, which represents the reference temperature of the cold wave and in (<b>b</b>), the red solid line on the graph is 33 °C, which represents the reference temperature of the heat wave.</p> "> Figure 8
<p>Spatial T<sub>MN</sub> distribution of (<b>a</b>) observed T<sub>MN</sub> and (<b>b</b>) predicted T<sub>MN</sub> on January 27, January 30, and February 7, 2018, during the cold wave period. The temperature range was set from −12 to −30 °C to express the distribution of cold wave occurrence.</p> "> Figure 9
<p>Spatial T<sub>MX</sub> distribution of (<b>a</b>) observed T<sub>MX</sub> and (<b>b</b>) predicted T<sub>MX</sub> on July 20, August 1, and August 13, 2018, during the heat wave period. The temperature range was set from 33 to 40 °C to express the distribution of heat wave occurrence.</p> "> Figure 10
<p>Comparison of mean observed T<sub>MX</sub> (red bar) and mean predicted T<sub>MX</sub> (solid line) on July 30 to August 11 for each land use classes. The triangle next to the upper statistical indicators (R<sup>2</sup>: coefficient of determination; RMSE: Root Mean Square Error) shows the increase (red) and decrease (blue) compared to the result of T<sub>MX</sub> prediction on heat wave period in 2018.</p> "> Figure A1
<p>Seasonal climate characteristics of South Korea (<a href="https://www.kma.go.kr" target="_blank">https://www.kma.go.kr</a>).</p> "> Figure A2
<p>Boxplots of (<b>a</b>,<b>b</b>) observed T<sub>MN</sub> and LST<sub>TN</sub> for 8 land use classes (red: urban, light yellow: paddy, yellow: upland crop, dark green: forest, green: grass, purple: wetland, cyan: bare field, and dark blue: water) on January 30 and February 7, 2018, respectively, and (<b>c</b>,<b>d</b>) observed T<sub>MX</sub> and LST<sub>AD</sub> on August 1 and 13, 2018, respectively. In (<b>a</b>,<b>b</b>), the red solid line on the graph is −12 °C, which represents the reference temperature of the cold wave and in (<b>c</b>,<b>d</b>), the red solid line on the graph is 33 °C, which represents the reference temperature of the heat wave.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Terra/Aqua MODIS LST
2.3. TensorFlow-LSTM
3. Results
3.1. Analysis of Correlation between MODIS LST and SAT with Descriptive Statistics
3.2. Characteristics Analysis by Land Use during Heat and Cold Waves
3.3. SAT Prediction Using TensorFlow-LSTM
4. Discussion
4.1. Correlation Analysis Results between MODIS LST and SAT and Usability for Regression Analysis
4.2. Climate Mitigation Effects during Heat and Cold Wave Periods
4.3. Limitation and Improvement of Predicting SAT using LSTM with Remotely Sensed Variables
5. Conclusions
- As a result of the correlation analysis between SAT and LST, LSTTD was well correlated with TMX (R 0.92 and RMSE 4.8 °C), and LSTTN showed a good correlation with TMN (R 0.93 and RMSE 4.2 °C) from 2008 to 2018. For the analytical results of the cold and heat wave periods in 2018, LSTTN showed suitable results for analysis with TMN, where R was 0.60 and RMSE was 4.7 °C in the cold wave period, and LSTAD was most correlated with TMX, where R was 0.37 and RMSE was 5.4 °C during the heat wave period.
- Concerning the characteristics analysis of eight land use classes (urban, paddy, upland crop, forest, grass, wetland, bare field, and water) during the heat and cold wave periods, the climate mitigation effects of wetland and vegetation areas were confirmed. In the cold wave period, the average temperatures of urban and wetland areas were higher than those of other land covers because heat islands affect climate mitigating effects. During the heat wave period, the TMX was always reasonably above the heat wave reference temperature, while the LSTAD was above or below the reference temperature. In addition, TMX did not show a significant difference in average temperature by land use, whereas LSTAD showed a significant difference. Nevertheless, we could confirm the climate mitigation effect of wetlands and vegetation areas during heat and cold wave periods, although the effect was different depending on the data analyzed.
- The SAT prediction model using TensorFlow-LSTM was constructed for each of the eight land use classes for cold and heat wave periods. Each model simulated the TMN during the cold wave period and TMX during the heat wave period. As a result, during cold waves, the TMN prediction model had good explanatory power, with average values of R2 of 0.59, RMSE of 3.10°C and IoA of 0.76. In the comparison between the observed TMN and predicted TMN distribution, the model seems to reflect the trend of the annual average TMN rise due to climate change, and it was found that the model predicted the TMN as higher than the observed TMN. During the heat wave period, the TMX prediction model was poorly described in comparison with the TMN prediction model, showing average values of R2 and IoA of 0.24 and 0.63, respectively. However, RMSE was lower (2.23°C) than that of the TMN prediction model, and the change in the average annual TMX increase by climate change narrowed the difference between the observed TMX and predicted TMX. The distribution of the predicted TMX compared with the observed TMX was distributed similarly to that of the cold wave period. However, because the observed TMX during heat waves are sometimes typical and sometimes extreme, the predicted TMX distribution tended to be lower as an unavoidable result. In addition, in the TMX and TMN prediction models, it was found that the existence of vegetation and water bodies for each land use influenced the prediction accuracy.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Climate in South Korea
Appendix B. Basic LSTM Equations
Appendix C. Characteristics of SAT and LST at the Different Land Use
Appendix D. SAT Prediction Model Result
STN | LU | R2 | RMSE | IoA | STN | LU | R2 | RMSE | IoA | STN | LU | R2 | RMSE | IoA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | UL | 0.71 | 2.55 | 0.68 | 159 | UB | 0.57 | 5.26 | 0.58 | 273 | UL | 0.62 | 2.88 | 0.64 |
95 | UB | 0.74 | 4.28 | 0.61 | 165 | WT | 0.66 | 2.97 | 0.44 | 277 | FR | 0.50 | 2.73 | 0.72 |
98 | UB | 0.74 | 2.15 | 0.75 | 172 | PD | 0.64 | 2.19 | 0.52 | 278 | PD | 0.83 | 4.35 | 0.65 |
100 | UL | 0.52 | 3.17 | 0.57 | 174 | UL | 0.63 | 2.93 | 0.54 | 279 | UB | 0.44 | 4.14 | 0.74 |
101 | UB | 0.32 | 6.55 | 0.70 | 175 | FR | 0.44 | 2.32 | 0.48 | 281 | PD | 0.60 | 2.76 | 0.66 |
104 | FR | 0.51 | 2.58 | 0.73 | 192 | UB | 0.58 | 4.43 | 0.63 | 284 | PD | 0.61 | 2.98 | 0.56 |
105 | UB | 0.55 | 3.51 | 0.74 | 202 | UB | 0.37 | 5.26 | 0.66 | 285 | FR | 0.56 | 3.18 | 0.67 |
106 | BR | 0.46 | 2.43 | 0.74 | 203 | FR | 0.69 | 2.43 | 0.63 | 288 | UB | 0.43 | 5.30 | 0.76 |
108 | UB | 0.52 | 3.13 | 0.64 | 211 | GR | 0.70 | 4.91 | 0.70 | 289 | UL | 0.51 | 2.98 | 0.61 |
112 | UB | 0.43 | 3.63 | 0.61 | 212 | UB | 0.69 | 2.70 | 0.65 | 294 | UB | 0.57 | 4.40 | 0.65 |
114 | UB | 0.64 | 3.64 | 0.66 | 216 | UB | 0.44 | 4.52 | 0.65 | 295 | FR | 0.67 | 2.23 | 0.70 |
119 | UB | 0.56 | 3.45 | 0.63 | 221 | UL | 0.73 | 3.91 | 0.69 | 217 | FR | 0.56 | 2.69 | 0.64 |
121 | GR | 0.70 | 3.89 | 0.69 | 226 | UL | 0.77 | 3.7 | 0.62 | 252 | UL | 0.59 | 2.31 | 0.57 |
127 | GR | 0.65 | 4.53 | 0.64 | 232 | UL | 0.73 | 2.52 | 0.63 | 253 | UB | 0.58 | 4.97 | 0.61 |
129 | FR | 0.64 | 2.03 | 0.63 | 235 | PD | 0.55 | 2.59 | 0.56 | 254 | UB | 0.51 | 4.14 | 0.65 |
131 | UB | 0.67 | 3.24 | 0.66 | 236 | PD | 0.56 | 4.05 | 0.64 | 255 | UB | 0.59 | 5.18 | 0.69 |
133 | WT | 0.64 | 4.23 | 0.61 | 238 | UL | 0.78 | 3.27 | 0.65 | 257 | BR | 0.62 | 2.08 | 0.67 |
135 | UL | 0.61 | 3.23 | 0.62 | 243 | GR | 0.64 | 3.92 | 0.57 | 258 | PD | 0.49 | 3.08 | 0.68 |
136 | FR | 0.68 | 2.38 | 0.67 | 244 | UB | 0.73 | 2.49 | 0.59 | 259 | UB | 0.49 | 3.89 | 0.46 |
137 | UB | 0.61 | 3.51 | 0.61 | 245 | FR | 0.69 | 2.33 | 0.59 | 263 | UB | 0.45 | 5.12 | 0.75 |
138 | UB | 0.54 | 4.75 | 0.76 | 247 | FR | 0.57 | 4.36 | 0.61 | 264 | UB | 0.47 | 2.50 | 0.65 |
140 | UB | 0.56 | 4.41 | 0.60 | 248 | UL | 0.70 | 3.50 | 0.51 | 266 | UB | 0.51 | 5.31 | 0.76 |
143 | UB | 0.38 | 4.09 | 0.79 | 260 | GR | 0.43 | 3.79 | 0.47 | 268 | GR | 0.55 | 2.49 | 0.41 |
146 | UB | 0.49 | 3.93 | 0.61 | 261 | PD | 0.56 | 3.33 | 0.50 | 276 | UB | 0.47 | 3.82 | 0.68 |
152 | UB | 0.59 | 4.53 | 0.76 | 262 | UB | 0.29 | 4.45 | 0.47 | 283 | WL | 0.50 | 2.09 | 0.69 |
155 | FR | 0.60 | 2.51 | 0.60 | 271 | PD | 0.66 | 3.30 | 0.65 | Mean | 0.58 | 3.52 | 0.63 | |
156 | UB | 0.63 | 3.52 | 0.67 | 272 | GR | 0.51 | 3.38 | 0.63 |
STN | LU | R2 | RMSE | IoA | STN | LU | R2 | RMSE | IoA | STN | LU | R2 | RMSE | IoA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | UL | 0.35 | 3.85 | 0.83 | 159 | UB | 0.15 | 2.21 | 0.60 | 273 | UL | 0.17 | 2.04 | 0.82 |
95 | UB | 0.43 | 2.82 | 0.77 | 165 | WT | 0.05 | 2.33 | 0.78 | 277 | FR | 0.48 | 2.99 | 0.78 |
98 | UB | 0.44 | 2.01 | 0.84 | 172 | PD | 0.11 | 1.96 | 0.87 | 278 | PD | 0.24 | 1.88 | 0.71 |
100 | UL | 0.15 | 3.29 | 0.81 | 174 | UL | 0.09 | 1.67 | 0.74 | 279 | UB | 0.33 | 1.76 | 0.59 |
101 | UB | 0.42 | 2.31 | 0.54 | 175 | FR | 0.25 | 3.01 | 0.81 | 281 | PD | 0.25 | 2.64 | 0.78 |
104 | FR | 0.39 | 3.09 | 0.80 | 192 | UB | 0.16 | 1.84 | 0.63 | 284 | PD | 0.12 | 1.77 | 0.74 |
105 | UB | 0.36 | 2.91 | 0.75 | 202 | UB | 0.31 | 2.34 | 0.60 | 285 | FR | 0.22 | 1.92 | 0.72 |
106 | BR | 0.37 | 2.26 | 0.79 | 203 | FR | 0.24 | 2.36 | 0.84 | 288 | UB | 0.34 | 1.69 | 0.55 |
108 | UB | 0.30 | 2.55 | 0.73 | 211 | GR | 0.42 | 2.82 | 0.65 | 289 | UL | 0.15 | 2.02 | 0.69 |
112 | UB | 0.23 | 2.25 | 0.69 | 212 | UB | 0.35 | 2.81 | 0.85 | 294 | UB | 0.21 | 1.77 | 0.61 |
114 | UB | 0.28 | 2.31 | 0.74 | 216 | UB | 0.26 | 2.89 | 0.66 | 295 | FR | 0.27 | 1.26 | 0.81 |
119 | UB | 0.21 | 2.30 | 0.70 | 221 | UL | 0.30 | 2.09 | 0.74 | 217 | FR | 0.26 | 3.10 | 0.84 |
121 | GR | 0.33 | 2.51 | 0.70 | 226 | UL | 0.17 | 1.71 | 0.76 | 252 | UL | 0.07 | 1.57 | 0.87 |
127 | GR | 0.25 | 2.37 | 0.63 | 232 | UL | 0.27 | 2.01 | 0.86 | 253 | UB | 0.13 | 2.19 | 0.66 |
129 | FR | 0.30 | 2.00 | 0.82 | 235 | PD | 0.22 | 2.04 | 0.73 | 254 | UB | 0.17 | 1.77 | 0.67 |
131 | UB | 0.20 | 1.68 | 0.76 | 236 | PD | 0.27 | 1.96 | 0.64 | 255 | UB | 0.28 | 1.80 | 0.60 |
133 | WT | 0.16 | 1.94 | 0.70 | 238 | UL | 0.23 | 1.61 | 0.77 | 257 | BR | 0.27 | 1.90 | 0.85 |
135 | UL | 0.16 | 1.82 | 0.76 | 243 | GR | 0.11 | 1.93 | 0.70 | 258 | PD | 0.24 | 1.29 | 0.67 |
136 | FR | 0.27 | 1.94 | 0.85 | 244 | UB | 0.11 | 1.64 | 0.86 | 259 | UB | 0.20 | 2.57 | 0.63 |
137 | UB | 0.21 | 2.35 | 0.71 | 245 | FR | 0.10 | 1.78 | 0.84 | 263 | UB | 0.37 | 1.52 | 0.60 |
138 | UB | 0.38 | 3.02 | 0.65 | 247 | FR | 0.14 | 1.67 | 0.66 | 264 | UB | 0.21 | 1.54 | 0.80 |
140 | UB | 0.18 | 1.94 | 0.62 | 248 | UL | 0.04 | 1.80 | 0.75 | 266 | UB | 0.35 | 1.65 | 0.57 |
143 | UB | 0.42 | 2.09 | 0.62 | 260 | GR | 0.26 | 2.66 | 0.62 | 268 | GR | 0.03 | 1.90 | 0.70 |
146 | UB | 0.11 | 1.82 | 0.68 | 261 | PD | 0.18 | 1.92 | 0.67 | 276 | UB | 0.29 | 2.30 | 0.72 |
152 | UB | 0.35 | 1.95 | 0.66 | 262 | UB | 0.16 | 1.91 | 0.58 | 283 | WL | 0.35 | 2.79 | 0.82 |
155 | FR | 0.17 | 1.72 | 0.81 | 271 | PD | 0.29 | 2.42 | 0.83 | Mean | 0.24 | 2.15 | 0.72 | |
156 | UB | 0.18 | 1.71 | 0.71 | 272 | GR | 0.22 | 2.28 | 0.71 |
References
- Xu, S.; Yang, X.; Sun, R.; Fu, S.; Liang, H.; Chen, L. Cold Wave Climate Characteristics and Risk Zoning in Jilin Province. J. Geosci. Environ. Prot. 2018, 6, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Tressol, M.; Ordonez, C.; Zbinden, R.; Brioude, J.; Thouret, V. Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmos. Chem. Phys. 2008, 8, 2150. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhao, K.; Huang, J.; Arend, M.; Gross, B.; Moshary, F. Observation of heat wave effects on the urban air quality and PBL in New York City area. Atmos. Environ. 2019, 218, 117024. [Google Scholar] [CrossRef]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, F. Correlation analysis between temperatures from Landsat thermal infrared retrievals and synchronous weather observations in Shenzhen, China. Remote Sens. Appl. Soc. Environ. 2017, 7, 40–48. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Towards a local split window method over land surfaces. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, J.F.; Zhang, R.H.; Gillies, R.R.; Xue, Y.Y.C.B.; Bo, Y.C. Air temperature retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol. 2005, 80, 37–48. [Google Scholar] [CrossRef]
- Zhang, R.; Rong, Y.; Tian, J.; Su, H.; Li, Z.L.; Liu, S. A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale. Remote Sens. 2015, 7, 6005–6025. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.V.; Viau, A.A.; Paquet, F. Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int. J. Climatol. J. R. Meteorol. Soc. 1997, 17, 1559–1579. [Google Scholar] [CrossRef]
- Shi, L.; Liu, P.; Kloog, I.; Lee, M.; Kosheleva, A.; Schwartz, J. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study. Environ. Res. 2016, 146, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Liu, Y.; Liu, Q.; Qin, F. A statistical method based on remote sensing for the estimation of air temperature in China. Int. J. Climatol. 2015, 35, 2131–2143. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, Z.; Shen, Y. Study on the estimation of near-surface air temperature from MODIS data by statistical methods. Int. J. Remote Sens. 2012, 33, 7629–7643. [Google Scholar] [CrossRef]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.C.; Knudby, A.; Sirovyak, P.; Xu, Y.; Hodul, M.; Henderson, S.B. Mapping maximum urban air temperature on hot summer days. Remote Sens. Environ. 2014, 154, 38–45. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. Isprs J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Hrisko, J.; Ramamurthy, P.; Yu, Y.; Yu, P.; Melecio-Vazquez, D. Urban air temperature model using GOES-16 LST and a diurnal regressive neural network algorithm. Remote Sens. Environ. 2020, 237, 111495. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yu, D. Deep learning: methods and applications. Found. Trends® Signal. Process. 2014, 7, 197–387. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part. C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Prasad, S. Convolutional recurrent neural networks forhyperspectral data classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 2016, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.L.; Huang, Q.; Wang, C.; Chen, J.; Chen, J.; He, D. Long short-term memory neural networks for online disturbance detection in satellite image time series. Remote Sens. 2018, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Arslan, N.; Sekertekin, A. Application of Long Short-Term Memory neural network model for the reconstruction of MODIS Land Surface Temperature images. J. Atmos. Sol. Terr. Phys. 2019, 194, 105100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Zhang, G.; Nie, Z.; Gui, Z.; Que, H. A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition. Int. J. Environ. Res. Public Health 2018, 15, 1032. [Google Scholar] [CrossRef] [Green Version]
- Lennartz, S.; Bunde, A. Trend evaluation in records with long-term memory: Application to global warming. Geophys. Res. Lett. 2009, 36, L16706. [Google Scholar] [CrossRef]
- Min, J.; Lee, M.; Jee, J.; Jang, M. A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments. J. Digit. Converg. 2016, 14, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, D.; Kim, G.; Lee, J.; Kim, H.; Jeong, S. AWS Observation Quality Management. In Proceedings of the Korean Meteorological Society Conference 2013, Gwangju, South Korea, 28–29 October 2013. [Google Scholar]
- Lee, Y.; Kim, S. The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data. Remote Sens. 2016, 8, 983. [Google Scholar] [CrossRef] [Green Version]
- NIMR (National Institute of Meteorogical Sciences). 100 Years of Climate Change on the Korean Peninsula; National Institute of Meteorogical Sciences: Jeju-si, Korea, 2018. [Google Scholar]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. Atmos. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.; Wade, G.M. A daily merged MODIS Aqua–Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ. 2012, 119, 315–324. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobee, B. Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng. 2001, 6, 367–376. [Google Scholar] [CrossRef]
- Giles, C.L.; Lawrence, S.; Tsoi, A.C. Rule inference for financial prediction using recurrent neural networks. In Proceedings of the IEEE/IAFE Computational Intelligence for Financial Engineering (CIFEr), New York, NY, US, 24–25 March 1997; pp. 253–259. [Google Scholar]
- Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series. In Proceedings of the 23rd Europian Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 22–24 April 2015; pp. 89–94. [Google Scholar]
- Kim, J. Introducing Google Tensorflow. J. Korea Soc. Comput. Inf. 2015, 23, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Cho, M. AI open source library tensorflow and AI application software development. J. Korean Inst. Commun. Sci. 2017, 34, 55–63. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Nick, M. Tensorflow Machine Learning Cookbook; Packt Publishing: Birmingham, UK, 2017; p. 418. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- KMA (Korea Meteorological Administration). 2018 Climate Characteristics; Press Release of Korea Meteorological Administration: Seoul, Korea, 2019. [Google Scholar]
- Chung, J.; Lee, Y.; Kim, S. Assessment of Surface Temperature Mitigation Effects of Wetlands During Heat and Cold Waves Using Daytime and Nighttime MODIS Land Surface Temperature. J. Wetl. Res. 2019, 21, 123–133. [Google Scholar]
- Song, B.G.; Park, K.H. Analysis of heat island characteristics considering urban space at nighttime. J. Korean Assoc. Geogr. Inf. Stud. 2012, 15, 133–143. [Google Scholar] [CrossRef]
- Lee, H.; Cho, S.; Kang, M.; Kim, J.; Lee, H.; Lee, M.; Jeon, J.; Yi, C.; Janicke, B.; Cho, C.; et al. The Quantitative Analysis of Cooling Effect by Urban Forests in Summer. Korean J. Agric. For. Meteorol. 2018, 20, 73–87. [Google Scholar]
- KMA (Korea Meteorological Administration). Climate Characteristics in 2019 Summer; Press Release of Korea Meteorological Administration: Seoul, Korea, 2019. [Google Scholar]
- KMA (Korea Meteorological Administration). Climate Characteristics in 2019 Winter; Press Release of Korea Meteorological Administration: Seoul, Korea, 2020. [Google Scholar]
- Shin, H.; Chang, E.; Hong, S. Estimation of near surface air temperature using MODIS land surface temperature data and geostatistics. Spat. Inf. Res. 2014, 22, 55–63. [Google Scholar]
- Meyer, H.; Katurji, M.; Appelhans, T.; Muller, M.; Nauss, T.; Roudier, P.; Zawar-Reza, P. Mapping Daily Air Temperature for Antarctica Based on MODIS LST. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; MacLean, D.; Johns, R.; Eveleigh, E. Effects of Hardwood Content on Balsam Fir Defoliation during the Building Phase of a Spruce Budworm Outbreak. Forests 2018, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling, 1st ed.Springer: New York, NY, USA, 2013. [Google Scholar]
- Meiforth, J.; Buddenbaum, H.; Hill, J.; Shepherd, J.; Dymond, J. Stress Detection in New Zealand Kauri Canopies with WorldView-2 Satellite and LiDAR Data. Remote Sens. 2020, 12, 1906. [Google Scholar] [CrossRef]
Land Use | Area (km2, %) | Elevation (m) | Latitude |
---|---|---|---|
Urban | 5589 (5.1) | 77.0 | 36.3 |
Rice paddy | 9877 (9.0) | 74.1 | 36.0 |
Upland crop | 8751 (8.0) | 145.9 | 36.0 |
Forest | 60,490 (55.4) | 333.7 | 36.4 |
Grass | 6800 (6.2) | 173.2 | 36.1 |
Wetland | 3190 (2.9) | 29.5 | 35.9 |
Bare | 2166 (2.0) | 141.1 | 36.3 |
Water | 12,295 (11.3) | 15.7 | 35.5 |
Total | 109,158 | - | - |
Index | Data Type | Whole Period (2008~2018) | Cold Wave Period (2018.01.23~2018.02.13) | Heat Wave Period (2018.07.11~2018.08.16) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSTTD | LSTTN | LSTAD | LSTAN | LSTTD | LSTTN | LSTAD | LSTAN | LSTTD | LSTTN | LSTAD | LSTAN | ||
R | TMX | 0.92 | 0.94 | 0.90 | 0.94 | 0.73 | 0.73 | 0.72 | 0.78 | 0.36 | 0.39 | 0.37 | 0.42 |
TMM | 0.90 | 0.95 | 0.87 | 0.95 | 0.70 | 0.75 | 0.66 | 0.79 | 0.32 | 0.39 | 0.31 | 0.43 | |
TMN | 0.86 | 0.93 | 0.82 | 0.93 | 0.53 | 0.60 | 0.48 | 0.59 | 0.20 | 0.18 | 0.20 | 0.24 | |
RMSE | TMX | 4.8 | 11.3 | 4.8 | 12.3 | 3.4 | 10.1 | 3.6 | 10.9 | 5.8 | 11.9 | 5.4 | 12.5 |
TMM | 5.9 | 6.0 | 7.5 | 7.0 | 5.2 | 5.2 | 7.7 | 5.7 | 4.4 | 6.5 | 5.3 | 7.3 | |
TMN | 10.2 | 4.2 | 11.9 | 4.3 | 10.1 | 4.7 | 13.4 | 4.7 | 6.9 | 3.8 | 7.9 | 4.2 |
Land Use [a] | Cold Wave Period (2018.01.23.–2018.02.13.) | Heat Wave Period (2018.07.11.–2018.08.16.) | ||||
---|---|---|---|---|---|---|
R2 | RMSE (°C) | IoA | R2 | RMSE (°C) | IoA | |
Urban (37) | 0.54 | 4.12 | 0.67 | 0.27 | 2.13 | 0.66 |
Rice paddy (9) | 0.61 | 3.18 | 0.74 | 0.21 | 1.99 | 0.60 |
Upland crop (12) | 0.66 | 3.08 | 0.78 | 0.18 | 2.12 | 0.61 |
Forest (12) | 0.59 | 2.65 | 0.80 | 0.26 | 2.24 | 0.64 |
Grass (7) | 0.60 | 3.85 | 0.67 | 0.23 | 2.35 | 0.59 |
Wetland (1) | 0.50 | 2.09 | 0.82 | 0.35 | 2.79 | 0.69 |
Bare field (2) | 0.54 | 2.25 | 0.82 | 0.32 | 2.08 | 0.71 |
Water (2) | 0.65 | 3.60 | 0.74 | 0.11 | 2.13 | 0.52 |
Mean | 0.59 | 3.10 | 0.76 | 0.24 | 2.23 | 0.63 |
Land Use | Cold Wave Period (2018.01.23.~2018.02.13.) | Heat Wave Period (2018.07.11.~2018.08.16.) | ||||||
---|---|---|---|---|---|---|---|---|
LSTTD | LSTTN | LSTAD | LSTAN | LSTTD | LSTTN | LSTAD | LSTAN | |
Urban | 0.0438 | 0.0354 | 0.0455 | 0.0443 | 0.0603 | 0.0765 | 0.0630 | 0.0784 |
Rice paddy | 0.0695 | 0.0388 | 0.0667 | 0.0496 | 0.0630 | 0.0371 | 0.0395 | 0.0581 |
Upland crop | 0.0616 | 0.0454 | 0.0295 | 0.0616 | 0.0767 | 0.0580 | 0.0466 | 0.0638 |
Forest | 0.0568 | 0.0398 | 0.0444 | 0.0514 | 0.0776 | 0.0452 | 0.0397 | 0.0663 |
Grass | 0.0445 | 0.0411 | 0.0363 | 0.0611 | 0.0708 | 0.0700 | 0.0389 | 0.0791 |
Wetland | 0.0141 | 0.0469 | 0.0419 | 0.0821 | 0.0389 | 0.0803 | 0.0765 | 0.1200 |
Bare field | 0.0405 | 0.0270 | 0.0282 | 0.0980 | 0.0716 | 0.0165 | 0.0393 | 0.0681 |
Water | 0.0689 | 0.0495 | 0.0309 | 0.0656 | 0.0723 | 0.0393 | 0.0299 | 0.0563 |
Mean | 0.0500 | 0.0405 | 0.0404 | 0.0642 | 0.0664 | 0.0529 | 0.0467 | 0.0738 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Lee, Y.; Jang, W.; Lee, S.; Kim, S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sens. 2020, 12, 3231. https://doi.org/10.3390/rs12193231
Chung J, Lee Y, Jang W, Lee S, Kim S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sensing. 2020; 12(19):3231. https://doi.org/10.3390/rs12193231
Chicago/Turabian StyleChung, Jeehun, Yonggwan Lee, Wonjin Jang, Siwoon Lee, and Seongjoon Kim. 2020. "Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves" Remote Sensing 12, no. 19: 3231. https://doi.org/10.3390/rs12193231
APA StyleChung, J., Lee, Y., Jang, W., Lee, S., & Kim, S. (2020). Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sensing, 12(19), 3231. https://doi.org/10.3390/rs12193231