Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations
"> Figure 1
<p>Incident solar flux surface spectral distribution.</p> "> Figure 2
<p>Coupling framework of the integrated model.</p> "> Figure 3
<p>Spatial locations of the observation stations in the Upstream Heihe River UHR basin (the green circles represent the snow observation stations at Yakou (4146 m, 100°14′, 38°00′) and Jingyangling (3790 m, 101°06′, 37°50′)). The upper part of the figure is a Digital Elevation Model (DEM) of the Tibetan Plateau. The base map of the study area is composed of land surface reflectance data from the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) (synthesized from four images in November 2014). The two photographs on the right show flux towers with albedo meters installed at the snow observation stations.</p> "> Figure 4
<p>Comparison between the observed and Weather Research and Forecasting (WRF)-modeled downward shortwave radiation flux (DSRF) (Yakou station).</p> "> Figure 5
<p>Evaluating the simulation accuracy of the parameterized scheme and the integrated model scheme. (<b>A</b>) Yakou station and (<b>B</b>) Jingyangling station simulation trend verification of the time series. (<b>C</b>) Yakou station and (<b>D</b>) Jingyangling station simulation accuracy verification.</p> "> Figure 6
<p>Snow spectral albedo simulated by the integrated model (wavelength = 0.6~2.5 μm; wavelength interval = 0.1 μm).</p> "> Figure 7
<p>Prediction of the average snow spectral albedo (wavelength = 300~5000 nm). The bottom image is a projection of the spatial image.</p> "> Figure 8
<p>Comparison between the narrowband snow albedo retrieved from MOD09GA reflectance data and the narrowband snow albedo simulated by the integrated model. MOD09GA band: retrieved narrowband snow albedo based on MOD09GA reflectance data. Modeled band: simulated narrowband snow albedo by the integrated model. The integrated model simulation results and remote sensing observation results are compared at the same time.</p> "> Figure 9
<p>Predicting the narrowband snow albedo targeting MOD09GA reflectance data based on the integrated model (seven reflectance band ranges are simulated for the MOD09GA reflectance data, and Julian days 305, 314, 324 and 334 in 2014 are taken as examples: the row direction is the Julian day, and the column direction is the band order). The integrated model simulation results and remote sensing observation results are compared at the same time.</p> "> Figure 10
<p>Comparison between the average narrowband snow albedo in 7 bands simulated by the integrated model and the average narrowband snow albedo in 7 bands retrieved by utilizing the MOD09GA reflectance data in the time series. The markers represent the daily average snow albedo of the whole study region.</p> "> Figure 11
<p>Comparison of the ranges of snow spectral albedo that can be obtained by the new integrated model, the Snow, Ice, and Aerosol Radiative (SNICAR) model, and mainstream remote sensing satellites (B1 (620–670 nm), B2 (841–876 nm), B3 (459–479 nm), B4 (545–565 nm), B5 (1230–1250 nm), B6 (1628–1652 nm), and B7 (2105–2155 nm) are MODIS observation bands; b1 (430–450 nm), b2 (450–510 nm), b3 (530–590 nm), b4 (640–670 nm), b5 (850–880 nm), b6 (1570–1650 nm), and b7 (2110–2290 nm) are Landsat 8 observation bands). The new integrated model can simulate the snow spectral albedo with a high spectral resolution, while the SNICAR model and mainstream optical remote sensing satellites can simulate snow spectral albedo only in limited spectral bands.</p> "> Figure 12
<p>Comparison of satellite remote sensing observations simulated by the new integrated model and the traditional simulation method (the green arrows represent the traditional simulation model steps, and the red arrow represent the single step in the new integrated model).</p> "> Figure A1
<p>(<b>A</b>) Influence of different solar zenith angles on the snow spectral albedo (snow grain size = 200 μm). (<b>B</b>) Influence of different effective snow grain sizes on snow spectral albedo (solar zenith angle = 60°). The red line is the auxiliary line at a wavelength of 0.7 μm, and the blue line is the auxiliary line at a wavelength of 1.4 μm.</p> "> Figure A2
<p>Typical spectral albedo curve for snow [<a href="#B60-remotesensing-12-03101" class="html-bibr">60</a>].</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Integration of Snow Energy Balance and Snow Radiative Transfer Processes
2.2. Integration of the Snow Mass Balance and Snow Grain Size Evolution Processes
2.3. Narrowband Snow Albedo Simulation Method Targeting MODIS Data
2.4. Parameter Settings and Transfer Process of the Integrated Model
- The beginning time loop initializes the snow status parameters, the atmospheric forcing data, the input parameters of the Mie scattering model, and the input parameters of the GBEHM.
- The snow state and its spatiotemporal dynamic evolution process are simulated based on the snow hydrological module of the integrated model. The Mie scattering model is utilized to simulate the microscopic optical characteristics of snow.
- Based on the snow mass balance and snow grain size evolution processes, the changes in snow grain size and other snow parameters are simulated dynamically.
- The snow grain size data simulated by the integrated model are combined with the snow energy balance and snow radiative transfer processes to simulate the transfer process of solar radiation energy in snow and track the energy changes caused by radiative scattering, absorption and reflection.
- Based on the simulation of the snow radiative transfer process by the integrated model, the snow spectral albedo in the solar spectrum region is estimated with a wavelength interval of 0.1 μm according to the incident solar flux spectral distribution.
- Aiming at the spectral waveband range of remote sensing satellite sensors, the incident solar flux spectral distribution and wavelength-by-wavelength snow spectral albedo are combined in the solar spectrum region to simulate the narrowband snow albedo targeting satellite remote sensing observations.
- The spatial and temporal variabilities in snow spectral albedo and narrowband snow albedo targeting MODIS observations are predicted based on the integrated model. The present loop is ended, and the next loop is entered.
2.5. Conversion of MOD09GA Snow Reflectance into Broadband Snow Albedo
2.6. Model Accuracy Validation
3. Research Region and Data
3.1. Research Region
3.2. Data
3.2.1. Remote Sensing Data
3.2.2. Ground Observation Data
3.2.3. Meteorological Data
3.2.4. Other Data
3.2.5. Snow Optical Characteristics Data
4. Results
4.1. Accuracy Verification of the Integrated Model
4.2. Simulation of Spatiotemporally Distributed Snow Spectral Albedo
4.3. Narrowband Snow Albedo Simulation Targeting MODIS Sensors
5. Discussion
5.1. Improved Direct Simulation of Snow Spectral Albedo by the New Method
5.2. Role of the Snow Spectral Albedo Simulation with a High Spectral Resolution
5.3. Limitations and Uncertainties of the New Integrated Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Variation Characteristics of Snow Spectrum Albedo
Appendix B. Variation in Snow Spectral Albedo with the Wavelength Simulated by CRREL
Appendix C. Descriptions of Snow Albedo Models
Model Classification | Model Name | Main Parameters | Snow Albedo Output Parameters | Author |
---|---|---|---|---|
Climate model | CoLM (Common Land Model) | Atmospheric forcing datasets, soil data, land use data, DEM, etc. | Visible snow albedo Near-infrared snow albedo | Dai et al., 2003 [25] |
Noah-MP (Noah-Multi Parameterization land surface model) | Yang et al., 2011 [27] | |||
BAT (Biosphere Atmosphere Transfer Scheme) | Dickinson et al., 2006 [28] | |||
GBEHM (Geomorphology-Based EcoHydrological Model) | Li et al., 2019 [29] | |||
RACMO2 (Regional Atmospheric Climate Model version 2) | Dalum et al., 2019 [40] | |||
CLM(Community Land Model) | Atmospheric forcing datasets, snow optical characteristics data, soil data, snow impurities data, land use data, etc. | Oleson et al., 2010 [26] | ||
Snow radiative transfer model | WW (Warren and Wiscombe model) | Snow optical characteristics data, snow attribute data, snow Impurities data, etc. | Snow spectral albedo Visible snow albedo Near-infrared snow albedo Broadband snow albedo | Warren et al., 1980 [45] |
DISORT (Discrete Ordinates Radiative Transfer) | Stamnes et al., 1988 [34] | |||
TARTES(Two-streAm Radiative TransfEr in Snow model) | Libois et al., 2013 [35] | |||
SNICAR (Snow, Ice, and Aerosol Radiative) | Flanner et al., 2006 [32] | |||
ART (Asymptotic Radiative Transfer) | Kokhanovsky et al., 2004 [19] | |||
SMAP (Snow Metamorphism and Albedo Process) | Snow optical characteristics data, snow attribute data, etc. | Visible snow albedo Near-infrared snow albedo Broadband snow albedo | Niwano et al., 2012 [37] | |
PBSAM (A Physically Based Snow Albedo Model) | Aoki et al., 2011 [39] |
References
- Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Z.B.; Salman, M.F. Semi-empirical approach for estimating broadband albedo of snow. Remote Sens. Environ. 2011, 115, 2086–2095. [Google Scholar] [CrossRef]
- Serreze, M.C.; Holland, M.M.; Julienne, S. Perspectives on the Arctic’s shrinking sea-ice cover. Science 2007, 315, 1533–1536. [Google Scholar] [CrossRef] [Green Version]
- De’ry, S.J.; Brown, R.D. Recent Northern Hemisphere Snow Cover Extent Trends and Implications for the Snow-Albedo Feedback. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978-2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Schmidt, L.S.; Aðalgeirsdóttir, G.; Guðmundsson, S.; Langen, P.L.; Pálsson, F.; Mottram, R.; Gascoin, S.; Björnsson, H. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations. Cryosphere 2017, 11, 1665–1684. [Google Scholar] [CrossRef] [Green Version]
- Molotch, N.P.; Painter, T.H.; Bales, R.C.; Dozier, J. Incorporating remotely–sensed snow albedo into a spatially--distributed snowmelt model. Geophys. Res. Lett. 2004, 31, 347–348. [Google Scholar] [CrossRef] [Green Version]
- Hock, R.; Holmgren, B. A Distributed Surface Energy-Balance Model for Complex Topography and Its Application to Storglaciären, Sweden. J. Glaciol. 2017, 51, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, H.X.; Hao, X.H.; Huang, X.D.; Hou, J.L.; Che, T.; Dai, L.Y.; Liang, T.G.; Huang, C.L.; Li, H.Y.; et al. Remote sensing for snow hydrology in China: Challenges and perspectives. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; He, Y.Q.; Hao, X.H.; Che, T.; Wang, J.; Huang, X.D. Downscaling snow cover fraction data in mountainous regions based on simulated inhomogeneous snow ablation. Remote Sens. 2015, 7, 8995–9019. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005; National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Rafael, P.; Cristina, A.; Javier, H.; María, P.P.; María, P. Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site. Hydrology 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Lamare, M.; Danne, O.; Brockmann, C.; Dumont, M.; Picard, G.; Arnaud, L.; Favier, V.; Jourdain, B.; Le Meur, E.; et al. Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sens. 2019, 11, 2280. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.H.; Jiang, T.L.; Wang, Z.J. Snow Grain-Size Estimation Using Hyperion Imagery in a Typical Area of the Heihe River Basin, China. Remote Sens. 2013, 5, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 30. [Google Scholar]
- Tedesco, M.; Kokhanovsky, A.A. The semi-analytical snow retrieval algorithm and its application to MODIS data. Remote Sens. Environ. 2007, 111, 228–241. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Liu, J.; Gao, F.; Strahler, A.H. Aqua and Terra MODIS albedo and reflectance anisotropy products. In Land Remote Sensing and Global Environmental Change; Springer: Berlin/Heidelberg, Germany, 2010; pp. 549–561. [Google Scholar]
- Roman, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.Y.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, O.; Roujean, J.-L. Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sens. Environ. 2003, 84, 100–119. [Google Scholar] [CrossRef]
- Schaaf, C.; Liu, J.; Gao, F.; Jiao, Z.; Shuai, Y.; Strahler, A. Collection 005 Change Summary for MODIS BRDF/Albedo (MCD43) Algorithms. Nd. Available online: https://landweb.modaps.eosdis.nasa.gov/QA_WWW/forPage/C005_Change_BRDF.pdf (accessed on 29 July 2020).
- Lucht, W.; Lewis, P. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. Remote Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- He, T.; Zhang, Y.; Liang, S.; Yu, Y.; Wang, D. Developing Land Surface Directional Reflectance and Albedo Products from Geostationary GOES-R and Himawari Data: Theoretical Basis, Operational Implementation, and Validation. Remote Sens. 2019, 11, 2655. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.J.; Zeng, X.B.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.Y.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.; Thornton, E.; Feddema, J. Technical Description of Version 4.0 of the Community Land Model (CLM). Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.7769&rep=rep1&type=pdf (accessed on 29 July 2020).
- Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Dickinson, E.; Hendersonsellers, A.; Kennedy, J. Biosphere Atmosphere Transfer Scheme (BATS). In Encyclopedia of Hydrological Sciences; American Cancer Society: Atlanta, GA, USA, 2006. [Google Scholar]
- Li, H.; Li, X.; Yang, D.; Wang, J.; Gao, B.; Pan, X.; Zhang, Y.; Hao, X. Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale. J. Geophys. Res. Atmos. 2019, 124, 8874–8895. [Google Scholar] [CrossRef]
- Essery, R.; Morin, S.; Lejeune, Y.; Menard, C.B. A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour. 2013, 55, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Zender, C.S. Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Zender, C.S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.; Warren, S. A Model for the Spectral Albedo of Snow. I: Pure Snow. J. Atmos. Sci. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative-Transfer in Multiple-Scattering and Emitting Layered Media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; France, J.L.; Arnaud, L.; Dumont, M.; Carmagnola, C.M.; King, M.D. Influence of grain shape on light penetration in snow. Cryosphere 2013, 7, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Aoki, T.; Fukabori, M.; Uchiyama, A. Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system. J. Meteorol. Soc. Jpn. 1999, 77, 595–614. [Google Scholar] [CrossRef] [Green Version]
- Niwano, M.; Aoki, T.; Kuchiki, K.; Hosaka, M.; Kodama, Y. Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res. Earth 2012, 117. [Google Scholar] [CrossRef]
- Niwano, M.; Aoki, T.; Hashimoto, A.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Fujita, K.; Tsushima, A.; Iizuka, Y.; Shimada, R.; et al. NHM-SMAP: Spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet. Cryosphere 2018, 12, 635–655. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Kuchiki, K.; Niwano, M.; Kodama, Y.; Hosaka, M.; Tanaka, T. Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Van Dalum, C.T.; Berg, W.J.; Libois, Q.; Picard, G.; Van den Broeke, M. A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2. Geosci. Model Dev. Discuss. 2019, 12, 5157–5175. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.B.; Yang, Z.L.; Levis, S.; Sakaguchi, K.; et al. Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model. J. Adv. Modeling Earth Syst. 2011, 3. [Google Scholar] [CrossRef]
- Noël, B.; Van De Berg, W.; Van Meijgaard, E.; Kuipers Munneke, P.; Van De Wal, R.; Van Den Broeke, M. Evaluation of the updated regional climate model RACMO2. 3: Summer snowfall impact on the Greenland Ice Sheet. Cryosphere 2015, 9, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Yang, P.; Loeb, N.G.; Kato, S. A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits. J. Atmos. Sci. 2019, 76, 1419–1436. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A Model for the Spectral Albedo of Snow. 2. Snow Containing Atmospheric Aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Toon, O.B.; Mckay, C.P.; Ackerman, T.P.; Santhanam, K. Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple-Scattering Atmospheres. J. Geophys. Res. Atmos. 1989, 94, 16287–16301. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Kang, S.C.; He, X.B.; Qu, B.; Tripathee, L.; Jing, Z.F.; Paudyal, R.; Li, Y.; Zhang, Y.L.; Yan, F.P.; et al. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci. Total Environ. 2017, 587, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Li, Y.P.; Huang, G.H.; Zhang, J.L.; Fan, Y.R. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model. J. Hydrol. 2017, 553, 750–762. [Google Scholar] [CrossRef]
- Shao, D.H.; Xu, W.B.; Li, H.Y.; Wang, J.; Hao, X.H. Reconstruction of Remotely Sensed Snow Albedo for Quality Improvements Based on a Combination of Forward and Retrieval Models. IEEE Trans. Geosci. Remote 2018, 56, 6969–6985. [Google Scholar] [CrossRef]
- Wang, J.; Li, S. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China. Sci. China Ser. D Earth Sci. 2006, 49, 881–888. [Google Scholar] [CrossRef]
- Bi, Y.; Xie, H.; Huang, C.; Ke, C. Snow cover variations and controlling factors at upper Heihe River Basin, Northwestern China. Remote Sens. 2015, 7, 6741–6762. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Xin, L.; Liu, S.; Ma, M.; Xiao, Q.; Liu, Q.; Rui, J.; Tao, C.; Wang, W.; Yuan, Q.; Li, H. HiWATER:An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin. Adv. Earth Sci. 2012, 27, 481–498. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Shi, X.; Han, X.; Luo, L.; Wang, L. Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China. Front. Earth Sci. 2012, 6, 314–323. [Google Scholar] [CrossRef]
- Wu, X.J.; Shen, Y.P.; Wang, N.L.; Pan, X.D.; Zhang, W.; He, J.Q.; Wang, G.Y. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, north-west China. Hydrol. Process. 2016, 30, 3967–3977. [Google Scholar] [CrossRef]
- Pan, X.; Li, X. Validation of WRF model on simulating forcing data for Heihe River Basin. Sci. Cold Arid. Reg. 2011, 3, 344–357. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones (GAEZ v3. 0)-Model Documentation. Available online: http://pure.iiasa.ac.at/id/eprint/13290/1/GAEZ_Model_Documentation.pdf (accessed on 29 July 2020).
- Wu, X.D.; Wen, J.G.; Xiao, Q.; Liu, Q.; Peng, J.J.; Dou, B.C.; Li, X.H.; You, D.Q.; Tang, Y.; Liu, Q.H. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of MODIS albedo products preliminary validation over northern China. Remote Sens. Environ. 2016, 184, 25–39. [Google Scholar] [CrossRef]
- O’Brien, H.W.; Munis, R.H. Red and Near-Infrared Spectral Reflectance of Snow. Vol. 332. Corps of Engineers, US Army, Cold Regions Research and Engineering Laboratory; 1975. Available online: https://ntrs.nasa.gov/citations/19760009497 (accessed on 29 July 2020).
- Hou, J.L.; Huang, C.L. Cloud Removal for Modis Fractional Snow Cover Products by Similar Pixel Replacement Guild with Modified Non-Dominated Sorting Genetic Algorithm. IEEE Int. Geosci. Remote Sens. Symp. (Igarss) 2016, 4913–4916. [Google Scholar] [CrossRef]
- Webster, M.; Gerland, S.; Holland, M.; Hunke, E.; Kwok, R.; Lecomte, O.; Massom, R.; Perovich, D.; Sturm, M. Snow in the changing sea-ice systems. Nat. Clim. Chang. 2018, 8, 946. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Light Scattering Media Optics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Warren, S.G. Optical properties of ice and snow. Philos. Trans. R. Soc. A 2019, 377. [Google Scholar] [CrossRef]
- Xiong, C.; Shi, J.C.; Ji, D.B.; Wang, T.X.; Xu, Y.L.; Zhao, T.J. A New Hybrid Snow Light Scattering Model Based on Geometric Optics Theory and Vector Radiative Transfer Theory. IEEE Trans. Geosci. Remote 2015, 53, 4862–4875. [Google Scholar] [CrossRef]
- Khokanovsky, A.A. Remote sensing of snow albedo, grain size, and pollution from space. Remote Sens. Cryosphere 2015, 48–72. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Finkelnburg, R.; Richters, J.; Yang, W.; Yao, T. WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci. Discuss. 2011, 7, 3551–3589. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.; Dai, Y.J.; Li, R.; Pang, Q.Q.; Yao, J.M. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau. Cold Reg. Sci. Technol. 2013, 87, 68–77. [Google Scholar] [CrossRef]
- Xu, J.H.; Shu, H. Assimilating MODIS-based albedo and snow cover fraction into the Common Land Model to improve snow depth simulation with direct insertion and deterministic ensemble Kalman filter methods. J. Geophys. Res. Atmos. 2014, 119, 10684–10701. [Google Scholar] [CrossRef]
- Hadley, O.L.; Kirchstetter, T.W. Black-carbon reduction of snow albedo. Nat. Clim. Chang. 2012, 2, 437–440. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Clarke, A.D. A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Yasunari, T.J.; Doherty, S.J.; Flanner, M.G.; Lau, W.K.M.; Ming, J.; Wang, H.L.; Wang, M.; Warren, S.G.; Zhang, R.D. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact. Adv. Atmos. Sci. 2015, 32, 64–91. [Google Scholar] [CrossRef]
- He, C.L.; Flanner, M.G.; Chen, F.; Barlage, M.; Liou, K.N.; Kang, S.C.; Ming, J.; Qian, Y. Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model. Atmos. Chem. Phys. 2018, 18, 11507–11527. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.H.; Wang, J.; Wang, J.; Zhang, P.; Huang, C.L. The Measurement and Retrieval of the Spectral Reflectance of Different Snow Grain Size on Northern Xinjiang, China (SCI). Guang Pu Xue Yu Guang Pu Fen XI 2013, 33, 190–195. [Google Scholar] [CrossRef]
- Nolin, A.W.; Dozier, J. Estimating Snow Grain-Size Using Aviris Data. Remote Sens. Environ. 1993, 44, 231–238. [Google Scholar] [CrossRef]
Data Type | Name | Product | Data Source | Temporal Resolution | Spatial Resolution | |
Remote Sensing Data | Terra/Aqua | MOD09GA | NASA | 1D | 500 m | |
Terra/Aqua | MOD10A1 | NSIDC | 1D | 500 m | ||
Data Type | Name | Measurement Method | Measurement Instrument | Temporal Resolution | Flux Tower Height | |
Ground Observation Data | Upwelling shortwave radiation flux (USRF) | Flux tower | China Meteorological Administration (CMA) series albedo meter | 30 min | 10 m | |
Downward shortwave radiation flux (DSRF) | Flux tower | CMA series albedo meter | 30 min | 10 m | ||
Data Type | Name | Data Sources | Acquisition Method | Temporal Resolution | Spatial Resolution | |
Integrated Model Driving Data | Meteorological Data | Longwave/shortwave radiation | Atmospheric forcing data from 2000 to 2015 in the Heihe River basin | WRF | 1 h | 1 km |
Wind speed | 1 h | 1 km | ||||
Temperature | 1 h | 1 km | ||||
Precipitation | 1 h | 1 km | ||||
Relative humidity | 1 h | 1 km | ||||
Atmospheric pressure | 1 h | 1 km | ||||
Other Data | Soil data | China Soil Map Based Harmonized World Soil Database (v1.1) | Cold and Arid Regions Sciences Data Center (CARSDC) | -- | 1 km | |
DEM | SRTM4 | CARSDC | -- | 90 m | ||
Land use data | Land Cover Products of China | CARSDC | -- | 1 km | ||
Name | Data Sources | Acquisition Method | Snow Grain Size Range | Spectral Band | ||
Snow Optical Characteristics Data | Snow and aerosol Mie parameters | Community Earth System Model (CESM) input data | CESM | 30–1500 μm | 470 | |
Snow grain size evolution lookup table data | CESM input data | CESM | -- | -- | ||
Light-absorbing snow impurities lookup table data | CESM input data | CESM | -- | -- |
Snow Station | Parameterized Blue-Sky Snow Albedo | Coupled Blue-Sky Snow Albedo | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | R | R2 | NSE | MAE | RMSE | R | R2 | NSE | |
Yakou | 0.10 | 0.11 | 0.27 | 0.07 | −1.42 | 0.03 | 0.04 | 0.85 | 0.73 | 0.72 |
Jingyangling | 0.14 | 0.16 | 0.27 | 0.07 | −1.05 | 0.04 | 0.06 | 0.80 | 0.64 | 0.40 |
Band Type | Average | MAE | RMSE | |
---|---|---|---|---|
Integrated Model | Remote Sensing | |||
Band 1 | 0.915 | 0.905 | 0.011 | 0.014 |
Band 2 | 0.834 | 0.813 | 0.021 | 0.024 |
Band 3 | 0.926 | 0.901 | 0.025 | 0.027 |
Band 4 | 0.923 | 0.870 | 0.053 | 0.054 |
Band 5 | 0.384 | 0.369 | 0.031 | 0.035 |
Band 6 | 0.066 | 0.054 | 0.015 | 0.019 |
Band 7 | 0.043 | 0.033 | 0.011 | 0.014 |
Average | 0.584 | 0.564 | 0.024 | 0.027 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, D.; Xu, W.; Li, H.; Wang, J.; Hao, X. Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations. Remote Sens. 2020, 12, 3101. https://doi.org/10.3390/rs12183101
Shao D, Xu W, Li H, Wang J, Hao X. Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations. Remote Sensing. 2020; 12(18):3101. https://doi.org/10.3390/rs12183101
Chicago/Turabian StyleShao, Donghang, Wenbo Xu, Hongyi Li, Jian Wang, and Xiaohua Hao. 2020. "Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations" Remote Sensing 12, no. 18: 3101. https://doi.org/10.3390/rs12183101
APA StyleShao, D., Xu, W., Li, H., Wang, J., & Hao, X. (2020). Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations. Remote Sensing, 12(18), 3101. https://doi.org/10.3390/rs12183101