The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods
"> Figure 1
<p>Location of the research plot.</p> "> Figure 2
<p>Scanning schemes of the research plot with a 16 m radius: (<b>A</b>) terrestrial laser scanning (TLS); (<b>B</b>) handheld mobile laser scanning (HMLS); and, (<b>C</b>) close-range photogrammetry (CRP).</p> "> Figure 2 Cont.
<p>Scanning schemes of the research plot with a 16 m radius: (<b>A</b>) terrestrial laser scanning (TLS); (<b>B</b>) handheld mobile laser scanning (HMLS); and, (<b>C</b>) close-range photogrammetry (CRP).</p> "> Figure 3
<p>Number of points in the cross sections.</p> "> Figure 4
<p>DBH estimation errors.</p> "> Figure 5
<p>Diameter estimation errors in TLS point cloud cross sections.</p> "> Figure 6
<p>Diameter estimation errors in HMLS point cloud cross sections.</p> "> Figure 7
<p>Diameter estimation errors in CRP point cloud cross sections.</p> "> Figure 8
<p>Root mean squared error of diameter estimation at different heights.</p> "> Figure 9
<p>Examples of irregular shape caused by (<b>A</b>) root crown; (<b>B</b>) rest of fallen branch; and, (<b>C</b>) node.</p> "> Figure 10
<p>The irregular shape of trunk cross sections, visualized on representative trees.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Plot and Field Measurements
2.2. Experimental Data Acquisition
3. Results
3.1. Experimental Data Acquisition
3.2. Diameter at Breast Height (DBH) Estimation
3.3. Cross Section Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Error: Between MS = 0.50797, df = 126.00 | |||
---|---|---|---|
Method | CRP | HMLS | TLS |
CRP | 0.007832 | 0.006134 | |
HMLS | 0.007832 | 0.000022 | |
TLS | 0.006134 | 0.000022 |
Error: Between MS = 0.41190, df = 462.00 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Height [m] | 0.3 | 0.7 | 1.0 | 1.3 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
0.3 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
0.7 | 0.000015 | 0.153022 | 0.052261 | 0.276182 | 0.641138 | 0.838445 | 0.341074 | 0.627986 | 0.373420 | 0.929709 | |
1.0 | 0.000015 | 0.153022 | 0.999999 | 1.000000 | 0.999362 | 0.989910 | 1.000000 | 0.999481 | 0.999998 | 0.961369 | |
1.3 | 0.000015 | 0.052261 | 0.999999 | 0.999896 | 0.983411 | 0.917372 | 0.999580 | 0.985240 | 0.999262 | 0.818133 | |
2.0 | 0.000015 | 0.276182 | 1.000000 | 0.999896 | 0.999984 | 0.998897 | 1.000000 | 0.999988 | 1.000000 | 0.992334 | |
3.0 | 0.000015 | 0.641138 | 0.999362 | 0.983411 | 0.999984 | 1.000000 | 0.999998 | 1.000000 | 0.999999 | 0.999983 | |
4.0 | 0.000015 | 0.838445 | 0.989910 | 0.917372 | 0.998897 | 1.000000 | 0.999669 | 1.000000 | 0.999824 | 1.000000 | |
5.0 | 0.000015 | 0.341074 | 1.000000 | 0.999580 | 1.000000 | 0.999998 | 0.999669 | 0.999999 | 1.000000 | 0.996762 | |
6.0 | 0.000015 | 0.627986 | 0.999481 | 0.985240 | 0.999988 | 1.000000 | 1.000000 | 0.999999 | 1.000000 | 0.999976 | |
7.0 | 0.000015 | 0.373420 | 0.999998 | 0.999262 | 1.000000 | 0.999999 | 0.999824 | 1.000000 | 1.000000 | 0.997926 | |
8.0 | 0.000015 | 0.929709 | 0.961369 | 0.818133 | 0.992334 | 0.999983 | 1.000000 | 0.996762 | 0.999976 | 0.997926 |
Error: Between MS = 0.38048, df = 462.00 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Height [m] | 0.3 | 0.7 | 1.0 | 1.3 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
0.3 | 0.000103 | 0.996114 | 0.999547 | 1.000000 | 0.440629 | 0.000704 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
0.7 | 0.000103 | 0.007040 | 0.002972 | 0.000233 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
1.0 | 0.996114 | 0.007040 | 1.000000 | 0.999318 | 0.041190 | 0.000019 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
1.3 | 0.999547 | 0.002972 | 1.000000 | 0.999962 | 0.079448 | 0.000030 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
2.0 | 1.000000 | 0.000233 | 0.999318 | 0.999962 | 0.320051 | 0.000311 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | |
3.0 | 0.440629 | 0.000015 | 0.041190 | 0.079448 | 0.320051 | 0.606685 | 0.000089 | 0.000015 | 0.000015 | 0.000015 | |
4.0 | 0.000704 | 0.000015 | 0.000019 | 0.000030 | 0.000311 | 0.606685 | 0.174987 | 0.000053 | 0.000015 | 0.000015 | |
5.0 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000089 | 0.174987 | 0.514141 | 0.000352 | 0.000352 | |
6.0 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000053 | 0.514141 | 0.421240 | 0.421240 | |
7.0 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000352 | 0.421240 | 1.000000 | |
8.0 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000015 | 0.000352 | 0.421240 | 1.000000 |
Error: Between MS = 2.0546, df = 393.00 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Height [m] | 0.3 | 0.7 | 1.0 | 1.3 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
0.3 | 0.130692 | 0.999999 | 0.999939 | 1.000000 | 0.992947 | 0.997608 | 0.646144 | 0.998865 | 0.999498 | 1.000000 | |
0.7 | 0.130692 | 0.288665 | 0.016889 | 0.052073 | 0.003072 | 0.006837 | 0.000090 | 0.015730 | 0.034956 | 0.456800 | |
1.0 | 0.999999 | 0.288665 | 0.995288 | 0.999876 | 0.929862 | 0.964634 | 0.367331 | 0.979806 | 0.989325 | 1.000000 | |
1.3 | 0.999939 | 0.016889 | 0.995288 | 1.000000 | 0.999996 | 1.000000 | 0.939284 | 1.000000 | 1.000000 | 0.999986 | |
2.0 | 1.000000 | 0.052073 | 0.999876 | 1.000000 | 0.999327 | 0.999859 | 0.798004 | 0.999946 | 0.999981 | 1.000000 | |
3.0 | 0.992947 | 0.003072 | 0.929862 | 0.999996 | 0.999327 | 1.000000 | 0.995818 | 1.000000 | 1.000000 | 0.998462 | |
4.0 | 0.997608 | 0.006837 | 0.964634 | 1.000000 | 0.999859 | 1.000000 | 0.992153 | 1.000000 | 1.000000 | 0.999454 | |
5.0 | 0.646144 | 0.000090 | 0.367331 | 0.939284 | 0.798004 | 0.995818 | 0.992153 | 0.993370 | 0.994880 | 0.856477 | |
6.0 | 0.998865 | 0.015730 | 0.979806 | 1.000000 | 0.999946 | 1.000000 | 1.000000 | 0.993370 | 1.000000 | 0.999702 | |
7.0 | 0.999498 | 0.034956 | 0.989325 | 1.000000 | 0.999981 | 1.000000 | 1.000000 | 0.994880 | 1.000000 | 0.999846 | |
8.0 | 1.000000 | 0.456800 | 1.000000 | 0.999986 | 1.000000 | 0.998462 | 0.999454 | 0.856477 | 0.999702 | 0.999846 |
References
- Maas, H.G.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579–1593. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kankare, V.; Holopainen, M. Stem curve measurement using terrestrial laser scanning. In Proceedings of the 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, SilviLaser 2011, Hobart, Australia, 16–20 October 2011; Available online: http://www.locuscor.net/silvilaser2011/papers/059_Liang.pdf (accessed on 6 May 2020).
- Sun, Y.; Liang, X.; Liang, Z.; Welham, C.; Li, W. Deriving merchantable volume in poplar through a localized tapering function from non-destructive terrestrial laser scanning. Forests 2016, 7, 87. [Google Scholar] [CrossRef]
- Astrup, R.; Ducey, M.J.; Granhus, A.; Ritter, T.; von Lüpke, N. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 2014, 44, 666–676. [Google Scholar] [CrossRef]
- Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 2012, 89, 86–93. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J. Tree stem and canopy biomass estimates from terrestrial laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Pitkänen, T.P.; Raumonen, P.; Kangas, A. Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS J. Photogramm. Remote Sens. 2019, 147, 294–306. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.; et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 144, 137–179. [Google Scholar] [CrossRef]
- Hyyppä, E.; Hyyppä, J.; Hakala, T.; Kukko, A.; Wulder, M.A.; White, J.C.; Pyörälä, J.; Yu, X.; Wang, Y.; Virtanen, J.P.; et al. Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogramm. Remote Sens. 2020, 164, 41–60. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, Y.; Jaakkola, A.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Honkavaara, E.; Liu, J. Forest data collection using terrestrial image-based point clouds from a handheld camera compared to terrestrial and personal laser scanning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5117–5132. [Google Scholar] [CrossRef]
- Del Perugia, B.; Giannetti, F.; Chirici, G.; Travaglini, D. Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning. Forests 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Kaartinen, H.; Hyyppä, J.; Kukko, A.; Jaakkola, A.; Hyyppä, H. Benchmarking the performance of mobile laser scanning systems using a permanent test field. Sensors 2012, 12, 12814–12835. [Google Scholar] [CrossRef] [Green Version]
- Čerňava, J.; Mokroš, M.; Tuček, J.; Antal, M.; Slatkovská, Z. Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning Data. Remote Sens. 2019, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, E.; Kukko, A.; Kaijaluoto, R.; White, J.C.; Wulder, M.A.; Pyörälä, J.; Liang, X.; Yu, X.; Wang, Y.; Kaartinen, H.; et al. Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 2020, 161, 246–262. [Google Scholar] [CrossRef]
- Williams, R.D.; Lamy, M.L.; Maniatis, G.; Stott, E. Three-dimensional reconstruction of fluvial surface sedimentology and topography using personal mobile laser scanning. Earth Surf. Process. Landforms 2020, 45, 251–261. [Google Scholar] [CrossRef]
- Hyyppä, J.; Virtanen, J.P.; Jaakkola, A.; Yu, X.; Hyyppä, H.; Liang, X. Feasibility of google tango and kinect for crowdsourcing forestry information. Forests 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Tomaštík, J.; Saloň, Š.; Tunák, D.; Chudý, F.; Kardoš, M. Tango in forests–An initial experience of the use of the new google technology in connection with forest inventory tasks. Comput. Electron. Agric. 2017, 141, 109–117. [Google Scholar] [CrossRef]
- Cabo, C.; del Pozo, S.; Rodríguez-Gonzálvez, P.; Ordóñez, C.; González-Aguilera, D. Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sens. 2018, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Chiabrando, F.; Della Coletta, C.; Sammartano, G.; Spanò, A.; Spreafico, A. TORINO 1911 project: A contribution of a SLAM-based survey to extensive 3D heritage modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Ryding, J.; Williams, E.; Smith, M.J.; Eichhorn, M.P. Assessing handheld mobile laser scanners for forest surveys. Remote Sens. 2015, 7, 1095–1111. [Google Scholar] [CrossRef] [Green Version]
- Sirmacek, B.; Shen, Y.; Lindenbergh, R.; Zlatanova, S.; Diakite, A. Comparison of Zeb1 and leica C10 indoor laser scanning point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 1, 143–149. [Google Scholar] [CrossRef]
- James, M.R.; Quinton, J.N. Ultra-rapid topographic surveying for complex environments: The hand-held mobile laser scanner (HMLS). Earth Surf. Process. Landforms 2014, 39, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J.; et al. Is field-measured tree height as reliable as believed—A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Z.; Yang, L.; Mannan, A.; Khan, T.U.; Zhao, Z.; Cheng, Z. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography. Remote Sens. 2018, 10, 1299. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of reconstruction of the tree stem surface using terrestrial close-range photogrammetry. Remote Sens. 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Forsman, M.; Börlin, N.; Holmgren, J. Estimation of tree stem attributes using terrestrial photogrammetry with a camera rig. Forests 2016, 7, 61. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Surový, P.; Kuželka, K. Accuracy of structure from motion models in comparison with terrestrial laser scanner for the analysis of DBH and height influence on error behaviour. J. For. Sci. 2016, 62, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Mokroš, M.; Liang, X.; Surový, P.; Valent, P.; Čerňava, J.; Chudý, F.; Tunák, D.; Saloň, I.; Merganič, J. Evaluation of close-Range photogrammetry image collection methods for estimating tree diameters. ISPRS Int. J. Geo. Inf. 2018, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest inventory with long range and high-speed personal laser scanning (PLS) and simultaneous localization and mapping (SLAM) technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Kurian, A.; Morin, K.W. A fast and flexible method for meta-map building for ICP based slam. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 273–278. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef] [Green Version]
- Koreň, M.; Mokroš, M.; Bucha, T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 122–128. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of personal laser scanning in forestry inventory. PLoS ONE 2019, 14, e0211392. [Google Scholar] [CrossRef]
- Cabo, C.; Ordóñez, C.; López-Sánchez, C.A.; Armesto, J. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 164–174. [Google Scholar] [CrossRef]
- Chudá, J.; Hunčaga, M.; Tuček, J.; Mokroš, M. The handheld mobile laser scanners as a tool for accurate positioning under forest canopy. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 211–218. [Google Scholar] [CrossRef]
- Čerňava, J.; Tuček, J.; Koreň, M.; Mokroš, M. Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopy. J. For. Sci. 2017, 63, 433–441. [Google Scholar] [CrossRef]
- You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data. Remote Sens. 2016, 8, 717. [Google Scholar] [CrossRef] [Green Version]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M.; et al. Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Hyyppä, J. Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors 2013, 13, 1614–1634. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Kankare, V.; Yu, X.; Hyyppä, J.; Holopainen, M. Automated stem curve measurement using terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1739–1748. [Google Scholar] [CrossRef]
- Vaaja, M.T.; Virtanen, J.P.; Kurkela, M.; Lehtola, V.; Hyyppä, J.; Hyyppä, H. The effect of wind on tree stem parameter estimation using terrestrial laser scanning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 117–122. [Google Scholar] [CrossRef]
- Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow. Transp. Res. Part C Emerg. Technol. 2018, 89, 384–406. [Google Scholar] [CrossRef]
- Qian, C.; Liu, H.; Tang, J.; Chen, Y.; Kaartinen, H.; Kukko, A.; Zhu, L.; Liang, X.; Chen, L.; Hyyppä, J.; et al. An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping. Remote Sens. 2017, 9, 3. [Google Scholar] [CrossRef] [Green Version]
Section Height [m] | Min [cm] | Max [cm] | Avg. [cm] | Std. [cm] |
---|---|---|---|---|
0.3 | 18.50 | 51.00 | 37.13 | 7.33 |
0.7 | 17.80 | 45.50 | 33.91 | 6.33 |
1 | 18.00 | 43.20 | 32.42 | 5.79 |
1.3 | 17.80 | 42.50 | 31.79 | 5.69 |
2 | 17.40 | 41.40 | 30.92 | 5.44 |
3 | 17.50 | 41.70 | 30.27 | 5.39 |
4 | 17.40 | 38.90 | 29.64 | 4.95 |
5 | 16.70 | 38.30 | 28.95 | 4.93 |
6 | 16.70 | 38.60 | 28.55 | 4.91 |
7 | 16.70 | 37.60 | 27.92 | 4.78 |
8 | 16.50 | 36.60 | 27.30 | 4.61 |
Height (m) | 0.3 | 0.7 | 1 | 1.3 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Number of Trees | 40 | 41 | 42 | 43 | 43 | 43 | 39 | 36 | 32 | 26 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunčaga, M.; Chudá, J.; Tomaštík, J.; Slámová, M.; Koreň, M.; Chudý, F. The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods. Remote Sens. 2020, 12, 2739. https://doi.org/10.3390/rs12172739
Hunčaga M, Chudá J, Tomaštík J, Slámová M, Koreň M, Chudý F. The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods. Remote Sensing. 2020; 12(17):2739. https://doi.org/10.3390/rs12172739
Chicago/Turabian StyleHunčaga, Milan, Juliána Chudá, Julián Tomaštík, Martina Slámová, Milan Koreň, and František Chudý. 2020. "The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods" Remote Sensing 12, no. 17: 2739. https://doi.org/10.3390/rs12172739
APA StyleHunčaga, M., Chudá, J., Tomaštík, J., Slámová, M., Koreň, M., & Chudý, F. (2020). The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods. Remote Sensing, 12(17), 2739. https://doi.org/10.3390/rs12172739