Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases
"> Figure 1
<p>Study region location and extent. Coordinate system and projection ETRS89 29 N.</p> "> Figure 2
<p>Chestnut plantations in the study area: (<b>a</b>) global view of the general structure of rural land tenure. Red lines delimit agricultural and forest cadastral plots. Coordinate system ETRS89 29N; (<b>b</b>) detailed view of chestnut plantations parcels. Parcels with blue contour are chestnut plantations parcels, while the rest of the area presents different land-covers. (Reference image: National Air Orthophotography Program (PNOA) image) [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>].</p> "> Figure 3
<p>Front view of the normalized Light Detection and Ranging (LiDAR) point cloud corresponding to a chestnut plantation tree line (marked in a red box in the upper image). Orthorectified aerial image of the corresponding chestnut plantation (PNOA image [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>]). In the point cloud ground points are represented in pink, canopy points over 4 m in dark green, and canopy points below 4 m in light green.</p> "> Figure 4
<p>Procedure followed for the detection of chestnut (<span class="html-italic">Castanea sativa</span>) plantations detection.</p> "> Figure 5
<p>Plot of the Mean Decrease in Gini for each of the variables in Model 1.</p> "> Figure 6
<p>Plot of the Mean Decrease in Gini for each variable in Model 2.</p> "> Figure 7
<p>Detail of the chestnut plantation map created using prediction Model 2. Image source: PNOA image [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>].</p> "> Figure 8
<p>False positives in prediction model 2: (<b>a</b>) tree lines acting as boundaries between parcels; (<b>b</b>) isolated trees; (<b>c</b>) forests edges. Chestnut plantations are mapped in pink. Image source: PNOA image [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>].</p> "> Figure 9
<p>Individual tree detection (ITD) results: (<b>a</b>) ITD vector layer over a PNOA orthophoto [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>]; (<b>b</b>) ITD vector layer over the CHM 2 m raster layer.</p> "> Figure 10
<p>Linear regression between observed heights and predicted heights obtained from the CHM for the sample of trees selected in the verification step.</p> "> Figure 11
<p>Steps followed in two-dimensional (2D) crown shape delineation: (<b>a</b>) orthogonal projection of canopy returns. (<b>b</b>) Creation of buffer to cluster points into individual trees. (<b>c</b>) Convex hull and tree crown shape delineation. Reference image: PNOA image [<a href="#B56-remotesensing-12-02276" class="html-bibr">56</a>].</p> "> Figure 12
<p>Linear regression between observed tree crown surfaces and predicted tree crown surfaces obtained from the 2D delineation method for the trees selected in the verification step.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Data Acquisition and Preprocessing
2.3. Detection of Chestnut Plantations
- Random Forest (RF) is a classifier consisting of a collection of tree-structured classifiers, combined such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest [61]. The outputting class is the mode of the classes of the individual trees [61].
- The SVM training algorithm aims to find the optimal hyperplane that separates the dataset into a discrete predefined number of classes. The term optimal separation hyperplane is the decision boundary that minimizes misclassifications, obtained in the training step. The hyperplane boundary can be defined using different kernels. A detailed mathematical description of a SVM can be found in Cortes and Vapnik [62].
- XGBoost is a scalable end-to-end tree boosting system that improves the classical gradient boosting machine (GBM). The GBM builds an additive model of weak learners (decision trees) and then generalizes them by optimizing an arbitrarily defined loss function to make stronger predictions [66]. XGBoost improvement is that the algorithm simultaneously optimizes the loss function while building the additive model. A detailed description of XGBoost can be found in Chen and Guestrin [63].
- maximum height above ground: each raster cell contains the elevation value of the highest point within the cell. We computed it using the tool lasgrid;
- average height above ground: each raster cell contains the average height value of the points within the cell. We computed it using the tool lasgrid;
- standard deviation of all point’s height: each raster cell contains the standard deviation value of the height values of all points within the cell. We computed it using the tool lasgrid;
- 50th percentile: each raster cell value is the height percentile 50th computed among all the points within the cell. We computed it using the tool lascanopy;
- 90th percentile: each raster cell value is the height percentile 90th computed among all the points within the cell. We computed it using the tool lascanopy;
- canopy base height: each raster cell values is the minimum elevation value above Diameter Base Height (DBH) among all the points within the grid. We adopted a DBH of 1.37 m. We computed it using the tool lascanopy;
- average canopy height: each raster cell value is the average elevation value of all the points within the cell above the DBH. We computed it using the tool lascanopy;
- canopy standard deviation: each raster cell value is the standard deviation of the elevation values of all the points within the cell above the DBH. We computed it using the tool lascanopy;
- canopy cover: each raster cell value is the number of first returns above the DBH divided by the number of all first returns of all the points within the cell. We computed it using the tool lascanopy;
- canopy density: each raster cell value is the number of points above the DBH divided by the total number of returns among all the points within the cell. We computed it using the tool lascanopy;
- canopy kurtosis: each raster cell value is the kurtosis computed for all the elevation values of the points above the DBH within the cell. We computed it using the tool lascanopy;
- canopy skewness: each raster cell value is the skewness computed for all the elevation values of the points above the DBH within the cell. We computed it using the tool lascanopy;
- shrub density: first, we classified the normalized point cloud into strata. We considered points below 0.15 m as ground points; points from 0.15 m to 0.5 m as low vegetation points; points from 0.5 m to 2 m as shrub points; and points above 2 m as high vegetation points. Next, we drop all the points above 2 m to obtain a normalized point cloud free of high vegetation points. The two steps were performed using lasclassify. Finally, on the normalized point cloud without the high vegetation points, we calculated the shrub density for each cell. This density value is the number of points above 0.5 m divided by the total number of points within the cell. We computed it using lascanopy.
2.4. ITD in Chestnut Plantations
2.5. Characterization of Chestnut Plantations
2.6. Assessment of Accuracy
3. Results
3.1. Detection of Chestnut Plantations
3.2. Chestnut Tree Detection in Plantations
3.3. Chestnut Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Voluntary Guidelines on National Forest Monitoring; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109619-2. [Google Scholar]
- Bettinger, P.; Boston, K.; Jacek, P.S.; Donald, L.G. Forest Management and Planning, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2017; Chapter 3. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Forests (SOFO); Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 978-92-5-130561-4. [Google Scholar]
- Forest Europe. Vision & Mission. Available online: https://foresteurope.org/foresteurope/#1470741557748-134fb529-3b91 (accessed on 2 December 2019).
- Food and Agriculture Organization of the United Nations (FAO). Strategic Framework on Mediterranean Forests. In Proceedings of the High Level Segment of the Third Mediterranean Forest Week, Tlemcen, Algeria, 17–21 September 2013. [Google Scholar]
- European Commission Environment. Nature and Biodiversity. Forest Information. Available online: https://ec.europa.eu/environment/forests/information.htm (accessed on 2 December 2019).
- Ertunç, E.; Çay, T.; Haklı, H. Modeling of reallocation in land consolidation with a hybrid method. Land Use Policy 2018, 76, 754–761. [Google Scholar] [CrossRef]
- Postek, P.; Leń, P.; Stręk, Ż. The proposed indicator of fragmentation of agricultural land. Ecol. Indic. 2019, 103, 581–588. [Google Scholar] [CrossRef]
- Ónega-López, F.-J.; Puppim de Oliveira, J.A.; Crecente-Maseda, R. Planning innovations in land management and governance in fragmented rural areas: Two examples from Galicia (Spain). Eur. Plan. Stud. 2010, 18, 755–773. [Google Scholar] [CrossRef]
- Latruffe, L.; Piet, L. Does land fragmentation affect farm performance? A case study from Brittany, France. Agric. Syst. 2014, 129, 68–80. [Google Scholar] [CrossRef]
- Ficko, A.; Lidestav, G.; Ní Dhubháin, Á.; Karppinen, H.; Zivojinovic, I.; Westin, K. European private forest owner typologies: A review of methods and use. For. Policy Econ. 2019, 99, 21–31. [Google Scholar] [CrossRef]
- Hirsch, F.; Schmithüsen, F.J. Private Forest Ownership in Europe; United Nations Economic Commission for Europe (UNECE) and FAO: Geneva, Switzerland, 2010. [Google Scholar] [CrossRef]
- Surový, P.; Kuželka, K.; Surovỳ, P.; Kuželka, K. Acquisition of forest attributes for decision support at the forest enterprise level using remote-sensing techniques—A review. Forests 2019, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, J.; Leinonen, U.; Vollrath, A.; Ortmann, A.; Lindquist, E.; d’Annunzio, R.; Pekkarinen, A.; Käyhkö, N. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 148, 63–74. [Google Scholar] [CrossRef]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-based integrated assessment of environmental variables and wildfire weverity through Sentinel-2 data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Hayes, D.J.; Joseph Hughes, M.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geogr. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency (ESA). ESA Standard Document—Sentinel-2 User Handbook. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 19 November 2019).
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz, L.A.; Álvarez-Taboada, F.; Tanase, M.; Valbuena, R. Remote sensing for the Spanish forests in the 21st century: A review of advances, needs, and opportunities. For. Syst. 2019, 28, 1. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74. [Google Scholar] [CrossRef]
- Crespin-Boucaud, A.; Lebourgeois, V.; Lo Seen, D.; Castets, M.; Bégué, A. Agriculturally consistent mapping of smallholder farming systems using remote sensing and spatial modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII–3/W11, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Apollo Mapping. Available online: https://apollomapping.com/imagery-dem-price-lists (accessed on 29 June 2020).
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, V.; Kumar, A. Hyperspectral remote sensing of forests: Technological advancements, opportunities and challenges. Earth Sci. Inform. 2018, 11, 487–524. [Google Scholar] [CrossRef]
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 2014, 60, 733–756. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of large-footprint scanning airborne Lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sens. Environ. 1999, 67, 298–308. [Google Scholar] [CrossRef]
- Xu, C.; Morgenroth, J.; Manley, B. Mapping net stocked plantation area for small-scale forests in new zealand using integrated rapideye and LiDAR sensors. Forests 2017, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Palenichka, R.; Doyon, F.; Lakhssassi, A.; Zaremba, M.B. Multi-scale segmentation of forest areas and tree detection in LiDAR images by the attentive vision method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1313–1323. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Picos, J.; Bastos, G.; Míguez, D.; Alonso, L.; Armesto, J. Individual tree detection in a eucalyptus plantation using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sens. 2020, 12, 885. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.P. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Packalén, P.; Maltamo, M. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens. Environ. 2007, 109, 328–341. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Parent, J.R.; Volin, J.C.; Civco, D.L. A fully-automated approach to land cover mapping with airborne LiDAR and high resolution multispectral imagery in a forested suburban landscape. ISPRS J. Photogramm. Remote Sens. 2015, 104, 18–29. [Google Scholar] [CrossRef]
- Mohan, M.; de Mendonça, B.A.F.; Silva, C.A.; Klauberg, C.; de Saboya Ribeiro, A.S.; de Araújo, E.J.G.; Monte, M.A.; Cardil, A. Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecol. Model. 2019, 409, 108736. [Google Scholar] [CrossRef]
- Kathuria, A.; Turner, R.; Stone, C.; Duque-Lazo, J.; West, R. Development of an automated individual tree detection model using point cloud LiDAR data for accurate tree counts in a Pinus radiata plantation. Aust. For. 2016, 79, 126–136. [Google Scholar] [CrossRef]
- Gobierno de España. Ministerio de Fomento. Instituto Geográfico Nacional (IGN). Plan Nacional de Ortofotografía Aérea (PNOA) LiDAR. Available online: https://pnoa.ign.es/presentacion (accessed on 28 March 2019).
- Barrett, F.; McRoberts, R.E.; Tomppo, E.; Cienciala, E.; Waser, L.T. A questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Remote Sens. Environ. 2016, 174, 279–289. [Google Scholar] [CrossRef]
- Novero, A.U.; Pasaporte, M.S.; Aurelio, R.M.; Madanguit, C.J.G.; Tinoy, M.R.M.; Luayon, M.S.; Oñez, J.P.L.; Daquiado, E.G.B.; Diez, J.M.A.; Ordaneza, J.E.; et al. The use of light detection and ranging (LiDAR) technology and GIS in the assessment and mapping of bioresources in Davao Region, Mindanao Island, Philippines. Remote Sens. Appl. Soc. Environ. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- de Oliveira, D.; Gomes, A.; Ilharco, F.A.; Manteigas, A.M.; Pinto, J.; Ramalho, J. Importance of insect pollinators for the production in the chestnut, Castanea sativa. In Proceedings of the ISHS Acta Horticulturae 561—VIII International Symposium on Pollination—Pollination: Integrator of Crops and Native Plant Systems; International Society for Horticultural Science (ISHS), Leuven, Belgium, 26 November 2001; pp. 269–273. [Google Scholar] [CrossRef]
- Zlatanov, T.; Schleppi, P.; Velichkov, I.; Hinkov, G.; Georgieva, M.; Eggertsson, O.; Zlatanova, M.; Vacik, H. Structural diversity of abandoned chestnut (Castanea sativa Mill.) dominated forests: Implications for forest management. For. Ecol. Manag. 2013, 291, 326–335. [Google Scholar] [CrossRef]
- Avtzis, D.N.; Melika, G.; Matošević, D.; Coyle, D.R. The Asian chestnut gall wasp Dryocosmus kuriphilus: A global invader and a successful case of classical biological control. J. Pest Sci. 2019, 92, 107–115. [Google Scholar] [CrossRef]
- Álvarez-Lafuente, A.; Benito-Matías, L.F.; Peñuelas-Rubira, J.L.; Suz, L.M. Multi-cropping edible truffles and sweet chestnuts: Production of high-quality Castanea sativa seedlings inoculated with Tuber aestivum, its ecotype T. uncinatum, T. brumale, and T. macrosporum. Mycorrhiza 2018, 28, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Corredoira, E.; Valladares, S.; Vieitez, A.M.; Ballester, A. Chestnut, European (Castanea sativa). Methods Mol. Biol. 2015, 1224, 163–176. [Google Scholar] [CrossRef]
- Milgroom, M.G.; Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu. Rev. Phytopathol. 2004, 42, 311–338. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; Staton, M.; Cheng, C.-H.; Park, J.; Yassin, N.B.M.; Ficklin, S.; Yeh, C.-C.; Hebard, F.; Baier, K.; Powell, W.; et al. Chestnut resistance to the blight disease: Insights from transcriptome analysis. BMC Plant Biol. 2012, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Manetti, M.; Giudici, F.; Amorini, E. Distribution and economic potential of the Sweet chestnut (Castanea sativa Mill.) in Europe. Ecol. Mediterr. 2004, 30, 179–193. [Google Scholar] [CrossRef]
- Fandiño Cerqueira, M.E. Hifas Foresta—Hifas da Terra Productos no maderables: Castañas y setas (Spanish). In Proceedings of the Congreso Nacional del Medio Ambiente (CONAMA 2018), Madrid, Spain, 26–29 November 2018. [Google Scholar]
- Xunta de Galicia. Consellería do Medio Rural. Primera Revisión del Plan Forestal de Galicia. Documento de diagnóstico del monte y el Sector Forestal Gallego (Spanish); Santiago de Compostela, Spain, 2018. Available online: https://mediorural.xunta.gal/sites/default/files/temas/forestal/plan-forestal/1_REVISION_PLAN_FORESTAL_CAST.pdf (accessed on 23 October 2019).
- Xunta de Galicia—Consellería del Medio Rural Orden de 28 de diciembre de 2018 (Spanish). Diario Oficial de Galicia. 2019, pp. 7572–7617. Available online: http://www.xunta.gal/dog/Publicados/2019/20190201/AnuncioG0426-020119-0001_es.pdf (accessed on 30 October 2019).
- Prada, M.; González-García, M.; Majada, J.; Martínez-Alonso, C. Development of a dynamic growth model for sweet chestnut coppice: A case study in Northwest Spain. Ecol. Model. 2019, 409, 108761. [Google Scholar] [CrossRef]
- Concello de Riós. Concello de Riós Introducción (Galician). Available online: http://concelloderios.info/?page_id=2247&lang=es (accessed on 20 June 2020).
- Gobierno de España. Ministerio de Hacienda. Sede Electrónica del Catastro (Spanish). Available online: https://www.sedecatastro.gob.es (accessed on 3 November 2019).
- Gobierno de España. Ministerio de Transporte Movilidad y Agenda Urbana Plan Nacional de Ortofotografía Aérea (PNOA) (Spanish). Available online: https://pnoa.ign.es (accessed on 5 October 2019).
- Martin Isenburg, LAStools—Efficient Tools for LiDAR Processing. Available online: http://lastools.org (accessed on 11 September 2019).
- Christovam, L.E.; Pessoa, G.G.; Shimabukuro, M.H.; Galo, M.L.B.T.B.T. Land use and land cover classification using hyperspectral imagery: Evaluating the performance of Spectral Angle Mapper, Support Vector Machine and Random Forest. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII–2/W13, 1841–1847. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Landry, S. Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data. Urban For. Urban Green. 2020, 53, 126675. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GI Sci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 2, 1189–1232. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. 2015, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Cutler, A. Random Forests—Description. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 12 November 2019).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2019. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 23 June 2020).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. xgboost: Extreme Gradient Boosting. 2020. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 23 June 2020).
- Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in automatic individual tree crown detection and delineation-evolution of LiDAR data. Remote Sens. 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, E.; Holmgren, J. Individual tree crown methods for 3D data from remote sensing. Curr. For. Rep. 2017, 3, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, H.; Wu, W.; Zhan, L.; Wei, J. Mapping rice paddy based on machine learning with Sentinel-2 multi-temporal data: Model comparison and transferability. Remote Sens. 2020, 12, 1620. [Google Scholar] [CrossRef]
- Alonso, L.; Armesto, J.; Picos, J. Chestnut cover authomatic classification through LiDAR and Sentinel-2 multitemporal data. In Proceedings of the XXIVth ISPRS Congress, Virtual Event, Nice, France, 31 August–2 September 2020. (accepted). [Google Scholar]
- Reis, S.; Taşdemir, K. Identification of hazelnut fields using spectral and gabor textural features. ISPRS J. Photogramm. Remote Sens. 2011, 66, 652–661. [Google Scholar] [CrossRef]
- Akar, Ö.Z.L.E.M.; Güngör, O.Ğ.U.Z. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int. J. Remote Sens. 2015, 36, 442–464. [Google Scholar] [CrossRef]
- Caruso, T.; Rühl, J.; Sciortino, R.; Marra, F.P.; La Scalia, G. Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data. Remote Sens. Agric. Ecosyst. Hydrol. XVI 2014, 9239, 92391F. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-based automatic detection and monitoring of chestnut trees. Remote Sens. 2019, 11, 855. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Malenovskỳ, Z.; Turner, D.; Vopěnka, P. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
Band | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) | Code |
---|---|---|---|---|
Band 1—Coastal aerosol | 443 | 20 | 60 | B01 |
Band 2—Blue | 490 | 65 | 10 | B02 |
Band 3—Green | 560 | 35 | 10 | B03 |
Band 4—Red | 665 | 30 | 10 | B04 |
Band 5—Near Infrared (NIR) | 705 | 15 | 20 | B05 |
Band 6—NIR | 740 | 15 | 20 | B06 |
Band 7—NIR | 783 | 20 | 20 | B07 |
Band 8—NIR | 842 | 115 | 10 | B08 |
Band 8A—NIR narrow | 865 | 20 | 20 | B8A |
Band 9—Water vapor | 945 | 20 | 60 | B09 |
Band 10—Shortwave Infrared (SWIR) (cirrus) | 1375 | 30 | 60 | B10 |
Band 11—SWIR | 1610 | 90 | 20 | B11 |
Band 12—SWIR | 2190 | 180 | 20 | B12 |
Variable | Description | Code |
---|---|---|
CHM (Canopy Height Model) | Maximum height above ground | high |
Average | Average height above ground | avg |
Standard deviation | Standard deviation of all points’ height | stdv |
50th Percentile | 50th percentile for height | P50 |
90th Percentile | 90th percentile for height | P90 |
Shrub density | Number of points between 0.5 m and 2 m divided by the total number of returns below 2 m | shrub |
Canopy base height | Lowest height above DBH (1.37 m) | c_min |
Average canopy height | Average height above DBH | c_avg |
Canopy standard deviation | Standard deviation of points above height of DBH | c_stdv |
Canopy cover | Number of first returns above DBH divided by the number of all first returns | c_cov |
Canopy density | Number of points above DBH divided by the total number of returns | c_dns |
Canopy kurtsosis | Canopy height kurtosis | c_ku |
Canopy skewness | Canopy height skewness | c_ske |
Training Data/Classification | Chestnut Pixels | Others Pixels | Class Error | OOB |
---|---|---|---|---|
Chestnut pixels | 917 | 88 | 0.087 | |
Others pixels | 83 | 1797 | 0.044 | |
5.93% |
Training Data/Classification | Chestnut Pixels | Others Pixels | Class Error | OOB |
---|---|---|---|---|
Chestnut pixels | 929 | 76 | 0.075 | |
Others pixels | 86 | 1794 | 0.045 | |
5.62% |
Real/Classif. | Other | Plantation | Total | Producer’s Accuracy |
---|---|---|---|---|
Other | 286 | 14 | 300 | 95.33% |
Plantation | 12 | 288 | 300 | 96.00% |
Total | 298 | 302 | 600 | |
User’s Accuracy | 95.97% | 95.36% | Overall Accuracy: 95.67% |
Real/Classif. | Other | Plantation | Total | Producer’s Accuracy |
---|---|---|---|---|
Other | 269 | 31 | 300 | 89.67% |
Plantation | 12 | 288 | 300 | 96.00% |
Total | 281 | 319 | 600 | |
User’s Accuracy | 95.73% | 90.28% | Overall Accuracy: 92.83% |
Real/Classif. | Other | Plantation | Total | Producer’s Accuracy |
---|---|---|---|---|
Other | 271 | 29 | 300 | 90.33% |
Plantation | 11 | 289 | 300 | 96.33% |
Total | 282 | 318 | 600 | |
User’s Accuracy | 96.00% | 90.28% | Overall Accuracy: 95.16% |
Detection Rate (DR) | Detection Accuracy (DA) | Omission Error (OE) | Commission Error (CE) |
---|---|---|---|
96% | 90% | 16% | 6% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, L.; Picos, J.; Bastos, G.; Armesto, J. Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases. Remote Sens. 2020, 12, 2276. https://doi.org/10.3390/rs12142276
Alonso L, Picos J, Bastos G, Armesto J. Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases. Remote Sensing. 2020; 12(14):2276. https://doi.org/10.3390/rs12142276
Chicago/Turabian StyleAlonso, Laura, Juan Picos, Guillermo Bastos, and Julia Armesto. 2020. "Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases" Remote Sensing 12, no. 14: 2276. https://doi.org/10.3390/rs12142276
APA StyleAlonso, L., Picos, J., Bastos, G., & Armesto, J. (2020). Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases. Remote Sensing, 12(14), 2276. https://doi.org/10.3390/rs12142276