Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield
"> Figure 1
<p>Diagrammatic representation of the remote sensing-integrated crop model (RSCM) model: (<b>a</b>) crop simulation procedure and (<b>b</b>) ‘within-season calibration’ for model parameterization using proximal or remote sensing information. LAI, PAR, and RS represent leaf area index, photosynthetically active radiation, and remote sensing, respectively.</p> "> Figure 2
<p>Determination of radiation use efficiency (ε), specific leaf area (SLA), and light extinction coefficient (k): ε estimated from the linear regression relationship between the amounts of accumulated photosynthetically active radiation (PAR) absorbed by soybean canopies and above-ground dry mass (<b>a</b>); SLA from the linear regression relationship between leaf area index and leaf dry weight (<b>b</b>); k derived from the exponential regression between transmitted and incoming PAR (T) and leaf area index, LAI (<b>c</b>); and determined values of ε, SLA, and k (<b>d</b>). The data were obtained for four germplasms or cultivars at Chonnam National University, Gwangju, South Korea, in 2017. Horizontal and vertical error bars in the panels (<b>b</b>,<b>c</b>) represent ±1 SD of the corresponding mean values, and r is Pearson’s correlation coefficient.</p> "> Figure 3
<p>Model calibration: Simulated (S) and measured (M), observed (O) LAI and above-ground dry mass (AGDM) for four soybean germplasms or cultivars, SS0903, SS0908, Daewon, and Poongsanamul based on the leaf area index (LAI) input option (<b>a</b>) and comparisons between S and M values for LAI and AGDM (<b>b</b>). Data were obtained at Chonnam National University, Gwangju, South Korea, in 2017. Vertical and horizontal error bars represent the standard deviations ±1 SD of the mean values. The solid and dotted lines in the panel (<b>b</b>) represent the ratio 1:1 and a linear fit, respectively. NSE, RMSE, and r denote Nash-Sutcliffe efficiency, root mean square error, and Pearson’s correlation coefficient, respectively.</p> "> Figure 4
<p>Model calibration: Simulated (S) and measured (M), observed (O) LAI and above-ground dry mass (AGDM) for four soybean germplasms or cultivars, SS0903, SS0908, Daewon, and Poongsanamul based on the vegetation index input option (<b>a</b>), and comparisons between S and M values for LAI and AGDM (<b>b</b>). Data were obtained at Chonnam National University, Gwangju, South Korea in 2017. Vertical and horizontal error bars represent the standard deviations ±1 SD of the mean values. The solid and dotted lines in the panel (<b>b</b>) represent the ratio 1:1 and a linear fit, respectively. NSE, RMSE, and r denote Nash-Sutcliffe efficiency, root mean square error, and Pearson’s correlation coefficient, respectively.</p> "> Figure 5
<p>Comparisons between simulated and measured soybean pulse using different input options, measured leaf area index (MLAI) (<b>a</b>) and observed vegetation indices (OVI) based on proximal sensing (<b>b</b>), at Chonnam National University, showing those for both options (<b>c</b>) Gwangju, South Korea in 2017. Vertical error bars represent ±1 SE of the mean values. RMSE and p denote root mean square error and the <span class="html-italic">p</span> value according to the two-sample <span class="html-italic">t</span>-test.</p> "> Figure 6
<p>Model validation: Simulated (S) and measured (M), observed (O) values in LAI and S and M values in above-ground dry mass (AGDM) for four soybean cultivars, Daepung, Daewon, Hengbuk, and Poongsan based on the leaf area index (LAI) input option (<b>a</b>) and comparisons between S and M values in LAI and AGDM (<b>b</b>). Data were obtained at Chonnam National University, Gwangju, South Korea, in 2018. Vertical and horizontal error bars represent ±1 SD of the means values. The solid and dotted lines in the panel (<b>b</b>) represent the ratio 1:1 and a linear fit, respectively. NSE, RMSE, and r denote Nash-Sutcliffe efficiency, root mean square error, and Pearson’s correlation coefficient, respectively.</p> "> Figure 7
<p>Model validation: Simulated (S) and measured (M), observed (O) values in LAI and S and M values in above-ground dry mass (AGDM) for four soybean cultivars, Daepung, Daewon, Hengbuk, and Poongsan based on the VI input option (<b>a</b>) and comparisons between S and M values in LAI and AGDM (<b>b</b>). Data were obtained at Chonnam National University, Gwangju, South Korea in 2018. Vertical and horizontal error bars represent ±1 SD of the means values. The solid and dotted lines in the panel (<b>b</b>) represent the ratio 1:1 and a linear fit, respectively. NSE, RMSE, and r denote Nash-Sutcliffe efficiency, root mean square error, and Pearson’s correlation coefficient, respectively.</p> "> Figure 8
<p>Comparisons between simulated and measured soybean pulse yields using different input options, measured leaf area index (MLAI) (<b>a</b>), and observed vegetation indices (OVI) based on proximal sensing (<b>b</b>), showing those for both options (<b>c</b>) at Chonnam National University, Gwangju, South Korea in 2018. Vertical and horizontal error bars represent ±1 SE of the mean values. RMSE and p denote root mean square error and the <span class="html-italic">p</span> value according to the two-sample <span class="html-italic">t</span>-test.</p> "> Figure 9
<p>Model validation: Simulated (S) and observed (O), measured (M) values in leaf area index (LAI) and S values in above ground dry mass (AGDM) for four soybean cultivars, Daewon, Haepum, Poongsanamul, and Taekwang (<b>a</b>), and comparisons between S and M values in soybean yield (<b>b</b>) for model validation. The data set was obtained at Jeonnam Agricultural Research and Extension Services in Naju, Chonnam province, South Korea in 2017. Vertical and horizontal error bars represent the standard deviations of the means values. RMSE and p denote root mean square error and the <span class="html-italic">p</span> value according to the two-sample <span class="html-italic">t</span>-test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Measurement of Soybean Growth Variables
2.3. Ground-based Proximal Sensing
2.4. Model Description
2.5. Statistical Analysis
3. Results
3.1. Estimation of Crop Growth-specific Parameters
3.2. Evaluation (Calibration and Validation) of RSCM
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Site | Year | Germplasm | L0 | a | b | c |
---|---|---|---|---|---|---|
CNU | 2017 | SS0903 | 0.166 | 0.001 | 0.005 | 0.004 |
SS0908 | 0.158 | 0.001 | 0.005 | 0.003 | ||
Daewon | 0.124 | 0.001 | 0.004 | 0.002 | ||
Poongsanamul | 0.186 | 0.001 | 0.004 | 0.002 | ||
2018 | Daepung | 0.022 | 0.001 | 0.004 | 0.007 | |
Daewon | 0.047 | 0.001 | 0.005 | 0.003 | ||
Hengbuk | 0.032 | 0.001 | 0.004 | 0.007 | ||
JARES | 2017 | Daewon | 0.065 | 0.001 | 0.005 | 0.007 |
Haepum | 0.032 | 0.001 | 0.005 | 0.011 | ||
Poongsanamul | 0.050 | 0.001 | 0.005 | 0.010 | ||
Taekwang | 0.060 | 0.001 | 0.005 | 0.003 |
Option | Germplasm | LAI | AGDM | ||||||
---|---|---|---|---|---|---|---|---|---|
S | O | RMSE | NSE | S | O | RMSE | NSE | ||
---------m2 m−2 --------- | n/a | ------------ g m−2 ------------ | n/a | ||||||
LAI | SS0903 | 5.47 | 5.46 | 0.38 | 0.88 | 634.5 | 656.5 | 97.23 | 0.95 |
SS0908 | 5.21 | 5.20 | 0.34 | 0.85 | 647.6 | 713.6 | 102.72 | 0.92 | |
Daewon | 5.17 | 5.17 | 0.31 | 0.92 | 636.6 | 659.5 | 88.22 | 0.93 | |
Poongsanamul | 5.23 | 5.22 | 0.30 | 0.93 | 643.6 | 664.9 | 79.83 | 0.95 | |
VI ♪ | SS0903 | 5.05 | 5.49 | 0.68 | 0.37 | 611.7 | 656.5 | 167.08 | 0.77 |
SS0908 | 4.74 | 5.13 | 0.61 | 0.32 | 610.2 | 713.6 | 212.90 | 0.62 | |
Daewon | 4.63 | 5.03 | 0.76 | −0.40 | 586.7 | 659.5 | 112.38 | 0.89 | |
Poongsanamul | 5.21 | 5.69 | 0.69 | −0.26 | 621.9 | 658.3 | 159.71 | 0.78 |
Option | Germplasm | LAI | AGDM | ||||||
---|---|---|---|---|---|---|---|---|---|
S | O | RMSE | NSE | S | O | RMSE | NSE | ||
---------m2 m−2 --------- | n/a | ------------ g m−2 ------------ | n/a | ||||||
LAI | Daepung | 3.93 | 3.88 | 0.37 | 0.96 | 379.7 | 412.7 | 79.93 | 0.96 |
Daewon | 4.45 | 4.42 | 0.52 | 0.91 | 453.0 | 445.5 | 101.49 | 0.95 | |
Hengbuk | 4.30 | 4.29 | 0.83 | 0.77 | 400.7 | 411.5 | 39.25 | 0.99 | |
Poongsanamul | 4.08 | 4.06 | 0.55 | 0.90 | 439.9 | 431.9 | 86.91 | 0.94 | |
VI ♪ | Daepung | 3.69 | 3.90 | 0.78 | 0.74 | 358.4 | 364.9 | 43.10 | 0.99 |
Daewon | 3.93 | 4.31 | 0.73 | 0.70 | 418.9 | 458.9 | 105.54 | 0.93 | |
Hengbuk | 3.85 | 4.32 | 0.87 | 0.67 | 389.7 | 396.9 | 35.78 | 0.99 | |
Poongsanamul | 3.99 | 4.42 | 0.94 | 0.56 | 401.6 | 444.9 | 90.40 | 0.95 |
Cultivar | Simulated LAI | Observed LAI | RMSE | NSE |
---|---|---|---|---|
-------------------------------- m2 m−2 -------------------------------- | n/a | |||
Daewon | 3.42 | 3.53 | 1.47 | 0.61 |
Haepum | 3.07 | 2.88 | 0.93 | 0.80 |
Poongsanamul | 3.49 | 2.96 | 1.16 | 0.68 |
Taekwang | 3.17 | 2.91 | 1.17 | 0.45 |
References
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Reeves, M.C.; Zhao, M.; Running, S.W. Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 2005, 26, 1403–1421. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Cook, P.W. Spring Wheat Yield Assessment Using NOAA AVHRR Data. Can. J. Remote Sens. 1995, 21, 43–51. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. Root Zone Water Quality Model: Modeling Management Effects on Water Quality and Crop Production; Water Resources Publications, LLC: Highland Ranch, CO, USA, 2000. [Google Scholar]
- Ko, J.; Jeong, S.; Yeom, J.; Kim, H.; Ban, J.-O.; Kim, H.-Y. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 2015, 9, 096067. [Google Scholar] [CrossRef]
- Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sens. Environ. 2017, 202, 129–141. [Google Scholar] [CrossRef]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.; Linden, D.; Daughtry, C.S.; McCarty, G. Acquisition of NIR-Green-Blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtrey, J.E. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens. Environ. 1981, 11, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Moulin, S.; Bondeau, A.; Delecolle, R. Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021–1036. [Google Scholar] [CrossRef]
- Yeom, J.-M.; Jeong, S.; Jeong, G.; Ng, C.T.; Deo, R.C.; Ko, J. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 2018, 8, 16121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.; Ko, J.; Yeom, J.-M. Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Zhiqiang, C.; Meng, J.; Wang, Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms. Remote Sens. 2018, 8, 303. [Google Scholar]
- Bouman, B.A.M. Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. Int. J. Remote Sens. 1992, 13, 2565–2581. [Google Scholar] [CrossRef]
- Maas, S.J. Parameterized model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 1993, 85, 354–358. [Google Scholar] [CrossRef]
- Maas, S.J. Parameterized model of gramineous crop growth: I. leaf area and dry mass simulation. Agron. J. 1993, 85, 348–353. [Google Scholar] [CrossRef]
- Maas, S.J. GRAMI: A Crop Model Growth Model That Can Use Remotely Sensed Information; USDA-ARS: Washington, DC, USA, 1992; p. 78. [Google Scholar]
- Ko, J.; Maas, S.J.; Lascano, R.J.; Wanjura, D. Modification of the GRAMI model for cotton. Agron. J. 2005, 97, 6. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.D.; Leonard, W.H.; Stamp, D.L.; Waldren, R.P. Principles of Field Crop Production, 4th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Jones, J.W.; Boote, K.J.; Hoogenboom, G.; Jagtap, S.S.; Wilkerson, G.G. SOYGRO V5.42. Soybean Crop Model Simulation Model. User’s Guide; University of Florida & International Benchmark Sites network for agrotechnology transfer, Florida Agri. Experi. Stat: Gainesville, FL, USA, Journal No. 8304; 1989; p. 75. [Google Scholar]
- Wilkerson, G.G.; Jones, J.W.; Coble, H.D.; Gunsolus, J.L. SOYWEED: A Simulation Model of Soybean and Common Cocklebur Growth and Competition. Agron. J. 1990, 82, 1003–1010. [Google Scholar] [CrossRef]
- Sinclair, T.R. Water and nitrogen limitations in soybean grain production I. Model development. Field Crop. Res. 1986, 15, 125–141. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Cassman, K.G.; Specht, J.E.; Dobermann, A.; Weiss, A.; Yang, H.; Conley, S.P.; Robinson, A.P.; Pedersen, P.; De Bruin, J.L. Simulation of soybean growth and yield in near-optimal growth conditions. Field Crop. Res. 2010, 119, 161–174. [Google Scholar] [CrossRef]
- McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ryu, Y.; Baldocchi, D.D.; Welles, J.M.; Norman, J.M. On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agric. For. Meteorol. 2013, 174–175, 170–183. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf (accessed on 1 November 2019).
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Angus, J.F.; Cunningham, R.B.; Moncur, M.W.; Mackenzie, D.H. Phasic development in field crops I. Thermal response in the seedling phase. Field Crop. Res. 1980, 3, 365–378. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wilson, J.W. Stand structure and light penetration. III. Sunlit foliage area. J. Appl. Ecol. 1967, 159–165. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. Radiation use efficiency. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 65, pp. 215–265. [Google Scholar]
- Collino, D.; Dardanelli, J.; Sereno, R.; Racca, R. Physiological responses of argentine peanut varieties to water stress: Light interception, radiation use efficiency and partitioning of assimilates. Field Crop. Res. 2001, 70, 177–184. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.; Liu, J.; Zhang, C.; Yang, W. PAR Interception and Utilization in Different Maize and Soybean Intercropping Patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Wright, I.J.; Lusk, C.H. Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis. Ecol. Appl. 2007, 17, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Raghubanshi, A.; Dwivedi, A.K. Relationship among specific leaf area, leaf nitrogen, leaf phosphorus and photosynthetic rate in herbaceous species of tropical dry deciduous in Vindhyan highlands. Ann. Plant Sci. 2017, 6, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Vile, D.; Garnier, E.; Shipley, B.; Laurent, G.; Navas, M.-L.; Roumet, C.; Lavorel, S.; Diaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef]
- Grime, J.P.; Cornelissen, J.H.; Thompson, K.; Hodgson, J.G. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 1996, 3, 489–494. [Google Scholar] [CrossRef]
- Maddonni, G.; Otegui, M.E.; Cirilo, A.G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Carpenter, A.; Board, J. Growth dynamic factors controlling soybean yield stability across plant populations. Crop Sci. 1997, 37, 1520–1526. [Google Scholar] [CrossRef]
- Hirose, T. Development of the Monsi-Saeki theory on canopy structure and function. Annu. Bot. 2005, 95, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Ebadi, A.; Sajed, K.; Gharib-Eshghi, A. Evaluation of light extinction coefficient, radiation use efficiency and grain yield of soybean genotypes. Afr. J. Agric. Res. 2014, 9, 222–229. [Google Scholar]
- Rosenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate: The biological environment; John Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Bell, M.; Wright, G.; Harch, G. Environmental and agronomic effects on the growth of four peanut cultivars in a sub-tropical environment. I. Dry matter accumulation and radiation use efficiency. Exp. Agric. 1993, 29, 473–490. [Google Scholar] [CrossRef]
- Nguyen, V.; Jeong, S.; Ko, J.; Ng, C.; Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 2019, 11, 2131. [Google Scholar] [CrossRef] [Green Version]
- Šimunek, J.; Van Genuchten, M.T.; Šejna, M. HYDRUS: Model use, calibration, and validation. Trans. Asabe 2012, 55, 1263–1274. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Maas, S.J. Within-season calibration of modeled wheat growth using remote sensing and field sampling. Agron. J. 1993, 85, 669–672. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Choi, J.; Xue, W.; Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 2018, 39, 2441–2462. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Ko, J.; Jeong, S.; Kim, J.-H.; Lee, B. Geospatial delineation of South Korea for adjusted barley cultivation under changing climate. J. Crop Sci. Biotechnol. 2017, 20, 417–427. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shawon, A.R.; Ko, J.; Ha, B.; Jeong, S.; Kim, D.K.; Kim, H.-Y. Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield. Remote Sens. 2020, 12, 410. https://doi.org/10.3390/rs12030410
Shawon AR, Ko J, Ha B, Jeong S, Kim DK, Kim H-Y. Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield. Remote Sensing. 2020; 12(3):410. https://doi.org/10.3390/rs12030410
Chicago/Turabian StyleShawon, Ashifur Rahman, Jonghan Ko, Bokeun Ha, Seungtaek Jeong, Dong Kwan Kim, and Han-Yong Kim. 2020. "Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield" Remote Sensing 12, no. 3: 410. https://doi.org/10.3390/rs12030410
APA StyleShawon, A. R., Ko, J., Ha, B., Jeong, S., Kim, D. K., & Kim, H.-Y. (2020). Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield. Remote Sensing, 12(3), 410. https://doi.org/10.3390/rs12030410