Optical Flow-Based Detection of Gas Leaks from Pipelines Using Multibeam Water Column Images
"> Figure 1
<p>Examples of T-A and D-T images, and the results of sidelobe effect elimination based on the minimum variance distortionless response (MVDR) beamforming methods [<a href="#B26-remotesensing-12-00119" class="html-bibr">26</a>]. (<b>a</b>,<b>c</b>) are the T-A images, whose ordinates and horizontal coordinates correspond to the beam angle and two-way travel time (TWTT). (<b>b</b>,<b>d</b>) are the D-T images, whose ordinates and horizontal coordinate correspond to vertical depth and horizon range. (<b>a</b>,<b>b</b>) are obtained using a discrete Fourier transformation (DFT) beamforming method, and (<b>c</b>,<b>d</b>) are the processing results via a MVDR beamforming method.</p> "> Figure 2
<p>Two types of data processing schemes in motion estimation of gas emissions.</p> "> Figure 3
<p>A photograph of HT300 PA MBES.</p> "> Figure 4
<p>Schematic diagram of the pool experiment for simulation of leaking gases.</p> "> Figure 5
<p>An underwater video screenshot of the bubbles being released.</p> "> Figure 6
<p>The WCIs containing gas emissions, obtained by the conventional beamformer (CBF) beamformer (<b>a</b>) and MVDR beamformer (<b>b</b>).</p> "> Figure 7
<p>The joint display of the WCI and velocity field estimated by frame A (<b>a</b>) and frame B (<b>b</b>), respectively. The fixed nozzle aperture is <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.6</mn> <mtext> </mtext> <mi>mm</mi> </mrow> </semantics></math> and the output intensity of pressure and the output flow rate was 0.1 MPa and 6.3 L/min, respectively.</p> "> Figure 8
<p>The joint display of the WCI and velocity field estimated by frame A (<b>a</b>) and frame B (<b>b</b>), respectively. The fixed nozzle aperture is <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>=</mo> <mn>1.2</mn> <mtext> </mtext> <mi>mm</mi> </mrow> </mrow> </semantics></math> and the output intensity of pressure and the output flow rate are 0.5 MPa and 51 L/min, respectively.</p> "> Figure 9
<p>The magnitudes of the velocities estimated from Scheme A and Scheme B. (<b>a</b>) and (<b>b</b>) correspond to the two experimental conditions of <a href="#remotesensing-12-00119-f007" class="html-fig">Figure 7</a> and <a href="#remotesensing-12-00119-f008" class="html-fig">Figure 8</a>, respectively.</p> "> Figure 10
<p>Comparison of echo intensities at two flow rate outputs.</p> "> Figure 11
<p>Results obtained by screening the data in <a href="#remotesensing-12-00119-f007" class="html-fig">Figure 7</a> using thresholds of image amplitude and velocity intensity. (<b>a</b>) and (<b>b</b>) correspond to the processing results of Scheme A and Scheme B, respectively.</p> "> Figure 12
<p>Results obtained by screening the data in <a href="#remotesensing-12-00119-f008" class="html-fig">Figure 8</a> using thresholds of image amplitude and velocity intensity. (<b>a</b>) and (<b>b</b>) correspond to the processing results of Scheme A and Scheme B, respectively.</p> "> Figure 13
<p>The joint display of the WCI and velocity field estimated by frame A (<b>a</b>) and frame B (<b>b</b>), respectively, from the experimental data of a measurement period in Songhua Lake.</p> "> Figure 14
<p>The result of the comprehensive detection of the data in <a href="#remotesensing-12-00119-f012" class="html-fig">Figure 12</a> using thresholds of pixel intensity, velocity magnitude, and velocity direction. (<b>a</b>) is the detection result using only the amplitude threshold, and (<b>b</b>) is the detection result of adding the magnitude of the velocity and direction threshold.</p> "> Figure 15
<p>The result of the amplitude threshold detection of WCI data measured on a short survey line in the Songhua Lake.</p> "> Figure 16
<p>The result of the multi-threshold detection of WCI data measured on a short survey line in the Songhua Lake.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Column Image (WCI) Generation and Sidelobe Suppression
2.2. Motion Estimation of Gas Emissions Via Farneback Optical Flow
2.2.1. Motion Estimation Using D-T Images
2.2.2. Motion Estimation Using T-A Images
2.2.3. Detection of Gas Emissions
3. Results
3.1. Pool Experiment
3.1.1. Experimental Design and Equipment
3.1.2. Optical Flow Calculation of the Water Column Images (WCIs) Containing Leaking Gases
3.1.3. Detection of Gas Emissions
3.2. Lake Experiment
3.2.1. Experimental Scenario
3.2.2. Detection of Gas Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colbo, K.; Ross, T.; Brown, C.; Weber, T. A review of oceanographic applications of water column data from multibeam echosounders. Estuar. Coast. Shelf Sci. 2014, 145, 41–56. [Google Scholar] [CrossRef]
- Merewether, R.; Olsson, M.S.; Lonsdale, P. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. J. Geophys. Res. 1985, 90, 3075–3085. [Google Scholar] [CrossRef]
- von Deimling, J.S.; Weinrebe, W. Beyond bathymetry: Water column imaging with multibeam echo sounder systems. Hydrographische Nachrichten 2014, 31, 6–10. [Google Scholar]
- von Deimling, J.S.; Greinert, J.; Chapman, N.R.; Rabbel, W.; Linke, P. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 2010, 8, 155–171. [Google Scholar] [CrossRef]
- Nikolovska, A.; Sahling, H.; Bohrmann, G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem. Geophys. 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Conti, A.; D’Emidio, M.; Macelloni, L.; Lutken, C.; Asper, V.; Woolsey, M.; Jarnagin, R.; Diercks, A.; Highsmith, R.C. Morpho-acoustic characterization of natural seepage features near the Macondo Wellhead (ECOGIG site OC26, Gulf of Mexico). Deep Sea Res. Pt II 2016, 129, 53–65. [Google Scholar] [CrossRef]
- Li, J.; White, P.R.; Bull, J.M.; Leighton, T.G. A noise impact assessment model for passive acoustic measurements of seabed gas fluxes. Ocean Eng. 2019, 183, 294–304. [Google Scholar] [CrossRef]
- Li, J.; Roche, B.; Bull, J.M.; White, P.R.; Davis, J.W.; Deponte, M.; Gordini, E.; Cotterle, D. Passive acoustic monitoring of a natural CO2 seep site—Implications for carbon capture and storage. Int. J. Greenh. Gas Control 2020, 93, 102899. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T.; Peng, D.; Shen, J. Underwater pipeline leakage detection via multibeam sonar imagery. J. Acoust. Soc. Am. 2017, 141, 1. [Google Scholar] [CrossRef]
- Hughes Clarke, J.E.; Lamplugh, M.; Czotter, K. Multibeam water column imaging: Improved wreck least-depth determination. In Proceedings of the Canadian Hydrographic Conference, Toronto, ON, Canada, 2–4 June 2006. [Google Scholar]
- Innangi, S.; Bonanno, A.; Tonielli, R.; Gerlotto, F.; Innangi, M.; Mazzola, S. High resolution 3-D shapes of fish schools: A new method to use the water column backscatter from hydrographic MultiBeam Echo Sounders. Appl. Acoust. 2016, 111, 148–160. [Google Scholar] [CrossRef]
- Urban, P.; Koser, K.; Greinert, J. Processing of multibeam water column image data for automated bubble/seep detection and repeated mapping. Limnol. Oceanogr. Methods 2017, 15, 1–21. [Google Scholar] [CrossRef]
- Leblond, I.; Scalabrin, C.; Berger, L. Acoustic monitoring of gas emissions from the seafloor. Part I: Quantifying the volumetric flow of bubbles. Mar. Geophys. Res. 2014, 35, 191–210. [Google Scholar] [CrossRef] [Green Version]
- Bayrakci, G.; Scalabrin, C.; Dupre, S.; Leblond, I.; Tary, J.B.; Lanteri, N.; Augustin, J.M.; Berger, L.; Cros, E.; Ogor, A.; et al. Acoustic monitoring of gas emissions from the seafloor. Part II: A case study from the Sea of Marmara. Mar. Geophys. Res. 2014, 35, 211–229. [Google Scholar] [CrossRef]
- Zhao, J.H.; Meng, J.X.; Zhang, H.M.; Wang, S.Q. Comprehensive detection of gas plumes from multibeam water column images with minimisation of noise interferences. Sensors 2017, 17, 2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Deimling, J.S.; Brockhoff, J.; Greinert, J. Flare imaging with multibeam systems: Data processing for bubble detection at seeps. Geochem. Geophys. Geosyst. 2007, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Veloso, M.; Greinert, J.; Mienert, J.; De Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard. Limnol. Oceanogr. Methods 2015, 13, 267–287. [Google Scholar] [CrossRef] [Green Version]
- von Deimling, J.S.; Papenberg, C. Technical note: Detection of gas bubble leakage via correlation of water column multibeam images. Ocean Sci. 2012, 8, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, A.E.A.; Saebo, T.O.; Hansen, R.E.; Pedersen, R.B.; Austeng, A. Automatic detection of marine gas seeps using an interferometric sidescan sonar. IEEE J. Ocean. Eng. 2017, 42, 590–602. [Google Scholar] [CrossRef]
- Christoffersen, J.T.M. Multi-detect algorithm for multibeam sonar data. In Proceedings of the OCEANS’13 MTS/IEEE, San Diego, CA, USA, 23–27 September 2013. [Google Scholar]
- Wilson, D.S.; Leifer, I.; Maillard, E. Megaplume bubble process visualization by 3D multibeam sonar mapping. Mar. Petrol. Geol. 2015, 68, 753–765. [Google Scholar] [CrossRef]
- Best, J.; Simmons, S.; Parsons, D.; Oberg, K.; Czuba, J.; Malzone, C. A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES). Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sandsten, J.; Andersson, M. Volume flow calculations on gas leaks imaged with infrared gas-correlation. Opt. Express. 2012, 20, 20318–20329. [Google Scholar] [CrossRef] [PubMed]
- Lurton, X. An Introduction to Underwater Acoustics. Principles and Applications, 1st ed.; Springer Praxis Books & Praxis Publishing: London, UK, 2002; pp. 206–209. [Google Scholar]
- Clarke, J.E.H. Applications of multibeam water column imaging for hydrographic survey. Hydrogr. J. 2006, 120, 3. [Google Scholar]
- Li, H.S.; Gao, J.; Du, W.D.; Zhou, T.; Xu, C.; Chen, B.W. Object representation for multi-beam sonar image using local higher-order statistics. EURASIP J. Adv. Signal Process. 2017, 2017, 7. [Google Scholar]
- Du, W.D.; Zhou, T.; Li, H.S.; Chen, B.W.; Wei, B. ADOS-CFAR Algorithm for Multibeam Seafloor Terrain Detection. Int. J. Distrib. Sens. Netw. 2016, 12, 1719237. [Google Scholar] [CrossRef] [Green Version]
- de Moustier, C. OS-CFAR detection of targets in the water column and on the seafloor with a multibeam echosounder. In Proceedings of the OCEANS’13 MTS/IEEE, San Diego, CA, USA, 23–27 September 2013. [Google Scholar]
- Weng, N.; Li, H.; Yao, B.; Zhou, T.; Wei, Y.; Chen, B.; Liu, X. Tunnel effect in multi-beam bathymetry sonar and its canceling with error feedback lattice recursive least square algorithm. In Proceedings of the MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008. [Google Scholar]
- Bai, M.R.; Ih, J.-G.; Benesty, J. Acoustic Array Systems: Theory, Implementation, and Application; Wiley/IEEE Press: Singapore, 2013; pp. 68–76. [Google Scholar]
- Farneback, G. Two-frame motion estimation based on polynomial expansion. In Proceedings of the SCIA 2003 13th Scandinavian Conference, Halmstad, Sweden, 2–29 June 2003. [Google Scholar]
- Ainslie, M.A.; Leighton, T.G. Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 2011, 130, 3184–3208. [Google Scholar] [CrossRef]
- Ainslie, M.A.; Leighton, T.G. Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound. J. Acoust. Soc. Am. 2009, 126, 2163–2175. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Xu, C.; Zhou, T. Influence of bubble distributions on the propagation of linear waves in polydisperse bubbly liquids. J. Acoust. Soc. Am. 2019, 145, 16–25. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Xu, C.; Chen, B.; Du, W. Acoustic scattering from bubble clouds near the sea surface based on linear oscillations. Acta Acust. 2019, 44, 312–320. [Google Scholar]
- Longuet, M.S.; Kerman, B.R.; Lunde, K. The release of air bubbles from an underwater nozzle. J. Fluid Mech. 1991, 230, 365–390. [Google Scholar] [CrossRef]
- Greinert, J.; Nutzel, B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar. Lett. 2004, 24, 75–85. [Google Scholar] [CrossRef]
- Wang, J.; Stewart, R.; Dyaur, N. Underwater gas-leak detection and imaging using ultrasonic scanning: Laboratory results. In Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, TX, USA, 24–29 September 2017. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, Particles; Academic Press: New York, NY, USA, 1978; pp. 169–199. [Google Scholar]
- Leifer, I.; Luyendyk, B.P.; Boles, J.; Clark, J.F. Natural marine seepage blowout: Contribution to atmospheric methane. Glob. Biogeochem. Cycles 2006, 20, 1–9. [Google Scholar] [CrossRef]
- Dickinson, A.; White, N.J.; Caulfield, C.P. Spatial variation of diapycnal diffusivity estimated from seismic imaging of internal wave field, Gulf of Mexico. J. Geophys. Res. Oceans 2017, 122, 9827–9854. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wu, M.; Zhou, T.; Li, J.; Du, W.; Zhang, W.; White, P.R. Optical Flow-Based Detection of Gas Leaks from Pipelines Using Multibeam Water Column Images. Remote Sens. 2020, 12, 119. https://doi.org/10.3390/rs12010119
Xu C, Wu M, Zhou T, Li J, Du W, Zhang W, White PR. Optical Flow-Based Detection of Gas Leaks from Pipelines Using Multibeam Water Column Images. Remote Sensing. 2020; 12(1):119. https://doi.org/10.3390/rs12010119
Chicago/Turabian StyleXu, Chao, Mingxing Wu, Tian Zhou, Jianghui Li, Weidong Du, Wanyuan Zhang, and Paul R. White. 2020. "Optical Flow-Based Detection of Gas Leaks from Pipelines Using Multibeam Water Column Images" Remote Sensing 12, no. 1: 119. https://doi.org/10.3390/rs12010119
APA StyleXu, C., Wu, M., Zhou, T., Li, J., Du, W., Zhang, W., & White, P. R. (2020). Optical Flow-Based Detection of Gas Leaks from Pipelines Using Multibeam Water Column Images. Remote Sensing, 12(1), 119. https://doi.org/10.3390/rs12010119