CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity
"> Figure 1
<p>Location and attribute of selected EC sites. (<b>a</b>) An enlarged image showing sites of US-PFa, US-Syv, US-WCr, US-Los and US-Ro4. (<b>b</b>) An enlarged image showing sites of CA-TP3, CA-TP4 and TPD. (<b>c</b>) The location map of the study area; the five-pointed star indicates the location of the study area, and the base map is created in ARCGIS using MCD12Q1 data.</p> "> Figure 2
<p>The flow diagram of this study.</p> "> Figure 3
<p>The linear relationship between instantaneous solar-induced chlorophyll fluorescence (SIF) and instantaneous gross primary productivity (GPP) for different EC flux towers. The red circle represents the data of ins757 while the black dot represents the data of ins771. The linear relationships are presented in colorful lines for different independent variables.</p> "> Figure 4
<p>The linear relationship between daily SIF and daily GPP for different EC flux towers. The red circle represents the data of daily757 while the black dot represents the data of daily771. The linear relationships are presented in colorful lines for different independent variables.</p> "> Figure 5
<p>Validation of the SIF-GPP model and the SIF-CO<sub>2</sub>-GPP model for different EC flux towers. The black dots represent the GPP estimated by the SIF-CO<sub>2</sub>-GPP model, and the red circles represent the GPP estimated by the SIF-GPP model. The fit lines for GPP of the flux towers and GPP<sub>M</sub> are indicated by black lines. Fitting lines for GPP for flux towers and GPP<sub>S</sub> are indicated by red lines.</p> "> Figure 6
<p>Linear relationships between XCO<sub>2</sub> of OCO-2 and measured surface CO<sub>2</sub> mixing ratio of EC flux towers. Dots indicate CO<sub>2</sub> of EC towers and XCO<sub>2</sub> fit points at the flux towers, and black lines indicate the fit line.</p> "> Figure 7
<p>Gridded GPP estimated by means of the SIF-CO<sub>2</sub>-GPP model for four seasons, (<b>a</b>)–(<b>d</b>). Gridded GPP estimated by means of SIF- GPP model for four seasons, (<b>e</b>)–(<b>h</b>). The value underneath the date represents the mean modeled GPP data in selected regions and the unit of GPP is g C m<sup>−2</sup>d<sup>−1</sup>.</p> "> Figure 8
<p>Sensitivity analysis of the effects of different levels of atmospheric CO<sub>2</sub> concentrations on SIF-GPP relationship. (<b>a</b>) SIF757 versus GPP; (<b>b</b>) SIF771 versus GPP.</p> "> Figure 9
<p>The spatial coverage of the OCO-2 satellite in October 2014; the color of the footprint indicates the magnitude of the chlorophyll fluorescence value, yellow indicates a high value and blue indicates a low value.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Method
2.3.1. The Linear Relationship of EC GPP and OCO-2 SIF at Different Bands and Timescales
2.3.2. SCOPE Model
2.3.3. Detection of CO2 Correction for SIF-GPP Model
3. Results
3.1. Selection of Appropriate Bands and Timescales
3.2. The Performance is Improved Due to the Addition of CO2
3.3. Relationships between XCO2 and Surface CO2 Mixing Ratio
3.4. Mapping GPP using OCO-2 SIF and XCO2 Products
3.5. Mechanism of CO2 Affecting Modeling of GPP
4. Discussions
4.1. Reasons for Differences between SIF-GPP and SIF-CO2-GPP Model
4.2. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlstrom, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.J.; Schuster, U.; Bakker, D.C.E.; Bates, N.R.; Corbiere, A.; Gonzalez-Devila, M.; Friedrich, T.; Hauck, J.; Heinze, C.; Johannessen, T.; et al. Tracking the Variable North Atlantic Sink for Atmospheric CO2. Science 2009, 326, 1391–1393. [Google Scholar] [CrossRef] [PubMed]
- Joeri, R.; McCollum, D.L.; Andy, R.; Malte, M.; Keywan, R. Probabilistic cost estimates for climate change mitigation. Nature 2013, 493, 79–83. [Google Scholar]
- Markus, R.; Michael, B.; Philippe, C.; Dorothea, F.; Mahecha, M.D.; Seneviratne, S.I.; Jakob, Z.; Christian, B.; Nina, B.; Frank, D.C. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar]
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang. Biol. 2015, 21, 1762–1776. [Google Scholar] [CrossRef]
- Amiro, B.D.; Barr, A.G.; Barr, J.G.; Black, T.A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K.L.; Davis, K.J.; Desai, A.R.; et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. Biogeosci. 2010, 115, 458–471. [Google Scholar] [CrossRef]
- Gebremichael, M.; Barros, A.P. Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens. Environ. 2006, 100, 150–166. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Schimel, D.; Evans, B.; Frankenberg, C.; Beringer, J.; Drewry, D.T.; Magney, T.; Marang, I.; Hutley, L.; Moore, C. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 2017, 122, 716–733. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Glob. Chang. Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests. Remote Sens. Environ. 2018, 204, 659–671. [Google Scholar] [CrossRef]
- Liu, X.; Guanter, L.; Liu, L.; Damm, A.; Malenovský, Z.; Rascher, U.; Peng, D.; Du, S.; Gastellu-Etchegorry, J.P. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sens. Environ. 2018, 231, 359–371. [Google Scholar] [CrossRef]
- Ahl, D.E.; Gower, S.T.; Mackay, D.S.; Burrowsa, S.N.; Normanc, J.M.; Diakd, G.R. The effects of aggregated land cover data on estimating NPP in northern Wisconsin. Remote Sens. Environ. 2005, 97, 1–14. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Space Phys. 2006, 111, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Butz, A.; Toon, G.C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O-2 A-band spectra of reflected sun-light. Geophys. Res. Lett. 2011, 38, 149–157. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 2018, 24, 3990–4008. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Morales, A.; Testi, L.; Villalobos, F.J. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens. Environ. 2013, 133, 102–115. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Zhang, Y.; Guanter, L.; Berry, J.A.; Joiner, J.; van der Tol, C.; Huete, A.; Gitelson, A.; Voigt, M.; Kohler, P. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Chang. Boil. 2014, 20, 3727–3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Kohler, P.; Magney, T. Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Chatterjee, A.; Gierach, M.M.; Sutton, A.J.; Feely, R.A.; Crisp, D.; Eldering, A.; Gunson, M.R.; O’Dell, C.W.; Stephens, B.B.; Schimel, D.S. Influence of El Nino on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 2017, 358, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tang, J.; Mustard, J.F.; Wu, J.; Zhao, K.; Serbin, S.; Lee, J.E. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests. Remote Sens. Environ. 2016, 179, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Guanter, L.; Berry, J.A.; van der Tol, C.; Yang, X.; Tang, J.W.; Zhang, F.M. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 2016, 187, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Joiner, J.; Migliavacca, M. Angle matters: Bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes. Glob. Chang. Biol. 2018, 24, 5017–5020. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.P.; De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Iversen, C.M.; Asao, S.; Guenet, B.; Harper, A.; Hickler, T.; Hungate, B.A.; et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 2019, 10, 587–599. [Google Scholar] [CrossRef]
- Kitaya, Y.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air velocity on photosynthesis of plant canopies under elevated CO levels in a plant culture system. Adv. Space Res. Off. J. Comm. Space Res. 2004, 34, 1466–1469. [Google Scholar] [CrossRef]
- Jones, A.G.; Scullion, J.; Ostle, N.; Levy, P.E.; Gwynn-Jones, D. Completing the FACE of elevated CO2 research. Environ. Int. 2014, 73, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, S.; Cox, P.M.; Eyring, V.; Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 2016, 538, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.J.; Myneni, R.B.; Alexandrov, G.A.; Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 2019, 10, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, Y.; Ohtani, Y.; Takanashi, S.; Iwata, H.; Yasuda, Y.; Nakai, Y. Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan. J. For. Res. 2012, 17, 283–295. [Google Scholar] [CrossRef]
- Los, S.O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: Indication for a CO2 fertilization effect in global vegetation. Glob. Biogeochem. Cycles 2013, 27, 318–330. [Google Scholar] [CrossRef]
- Murayama, S.; Saigusa, N.; Chan, D.; Yamamoto, S.; Kondo, H.; Eguchi, Y. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan. Tellus Ser. B-Chem. Phys. Meteorol. 2003, 55, 232–243. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Rosema, A. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol. 2009, 149, 96–105. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Kothavala, Z.; Arain, M.A.; Black, T.A.; Verseghy, D. The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS). Agric. For. Meteorol. 2005, 133, 89–108. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 2003, 23, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Tol, C.V.D.; Magnani, F.; Sabater, N.; Rivera, J.P.; Mohammed, G.; Moreno, J. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sens. Environ. 2016, 176, 139–151. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Kucharik, C.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2010, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.; Verma, M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, 258–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.M.; He, X.Y.; Wang, K.L. and Chen, W. Photosynthetic characteristics of five arbor species in Shenyang urban area. Chin. J. Appl. Ecol. 2007, 18, 1709–1714. [Google Scholar]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.W. Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2. Ecology 2006, 87, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Su, B.; Currie, W.J.; Finzi, A.; Hartwig, U.; Hungate, B.; McMurtrie, R.; Oren, R.; Parton, W. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 2004, 54, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2010, 30, 258–270. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Quick, W.P. and Furbank, R.T. The development of C4 rice: Current progress and future challenges. Science 2012, 336, 1671. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 2006, 19, 3337. [Google Scholar] [CrossRef]
- Soukupová, J.; Cséfalvay, L.; Urban, O.; Košvancová, M.; Marek, M.; Rascher, U.; Nedbal, L. Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone. Funct. Plant Biol. 2008, 35, 63–76. [Google Scholar] [CrossRef]
Site | Lat (°) | Lon (°) | Year | Type | Institution |
---|---|---|---|---|---|
CA-TP3 | 42.71 | −80.35 | 2014–2017 | ENF | McMaster University |
CA-TP4 | 42.71 | −80.36 | 2014–2017 | ENF | McMaster University |
US-Los | 46.09 | −89.98 | 2014–2019 | WET | University of Wisconsin |
CA-TPD | 42.64 | −80.56 | 2014–2015 | DBF | McMaster University |
US-Srr | 38.20 | −122.03 | 2014–2017 | WET | USGS |
US-Syv | 46.24 | −89.35 | 2014–2018 | MF | University of Wisconsin |
US-PFa | 45.95 | −90.27 | 2014–2018 | MF | University of Wisconsin |
US-SCC | 61.31 | −121.30 | 2014–2016 | ENF | University of California |
US-EML | 63.88 | −149.25 | 2014–2018 | OSH | University of Northern Arizona |
US-Ro4 | 44.68 | −122.03 | 2014–2019 | GRA | USDA-ARS |
US-PHM | 42.47 | −70.83 | 2014–2018 | WET | Marine Biological Laboratory |
US-WCr | 45.81 | −90.27 | 2014–2018 | DBF | University of Wisconsin |
Site | ins757-GPP | Daily757-GPP |
---|---|---|
US-Srr | 0.30 (p < 0.001) | 0.53 (p < 0.001) |
US-WCr | 0.67 (p < 0.001) | 0.80 (p < 0.001) |
US-Syv | 0.18 (p < 0.001) | 0.61 (p < 0.001) |
US-PFa | 0.60 (p < 0.001) | 0.72 (p < 0.001) |
CA-TP3 | 0.40 (p < 0.001) | 0.47 (p < 0.001) |
CA-TP4 | 0.47 (p < 0.001) | 0.41 (p < 0.001) |
CA-SCC | 0.74 (p < 0.001) | 0.68 (p < 0.001) |
US-EML | 0.81 (p < 0.001) | 0.73 (p < 0.001) |
US-PHM | 0.60 (p < 0.001) | 0.75 (p < 0.001) |
US-Ro4 | 0.74 (p < 0.001) | 0.87 (p < 0.001) |
US-TPD | 0.36 (p < 0.001) | 0.40 (p < 0.001) |
US-Los | 0.81 (p < 0.001) | 0.64 (p < 0.001) |
Site | SIF-GPP Model | SIF-CO2-GPP Model | Increase Rate (%) | ||
---|---|---|---|---|---|
Fitted Formula | R2 | Fitted Formula | R2 | ||
US-Srr | GPP = 44.97 * × SIF − 2.67 | 0.53 | GPP = 11.52 × SIF − 0.16 × CO2 + 65.37 | 0.70 | 32% |
US-WCr | GPP = 21.06 × SIF − 1.78 | 0.80 | GPP = 19.80 × SIF − 0.05 × CO2 + 18.49 | 0.83 | 4% |
US-Syv | GPP = 20.50 × SIF + 1.98 | 0.61 | GPP = 9.37 × SIF − 0.53 × CO2 + 214.29 | 0.86 | 41% |
US-PFa | GPP = 15.86 × SIF − 0.64 | 0.72 | GPP = 11.52 × SIF − 0.16 × CO2 + 65.37 | 0.88 | 19% |
US-TP3 | GPP = 30.05 × SIF + 2.97 | 0.47 | GPP = 29.42 × SIF − 0.41 × CO2 + 150.73 | 0.63 | 34% |
US-TP4 | GPP = 29.20 × SIF + 2.90 | 0.41 | GPP = 9.42 × SIF − 0.47 × CO2 + 179.32 | 0.67 | 33% |
CA-SCC | GPP = 42.70 × SIF − 0.80 | 0.68 | GPP = 33.81 × SIF − 0.05 × CO2 + 22.64 | 0.73 | 7% |
US-EML | GPP = 18.56 × SIF + 0.73 | 0.73 | GPP = 23.48 × SIF + 0.07 × CO2 − 27.53 | 0.80 | 10% |
US-TPD | GPP = 27.70 × SIF + 7.02 | 0.40 | GPP = 32.30 × SIF + 0.11 × CO2 − 37.61 | 0.50 | 25% |
US-Ro4 | GPP = 42.92 × SIF − 1.09 | 0.87 | GPP = 49.09 × SIF + 0.08 × CO2 − 36.03 | 0.90 | 3% |
US-PHM | GPP = 17.82 × SIF − 0.64 | 0.75 | GPP = 17.74 × SIF − 0.001 × CO2 − 0.40 | 0.77 | 3% |
US-Los | GPP = 8.77 × SIF − 0.01 | 0.64 | GPP = 8.256 × SIF − 0.07 × CO2 + 29.57 | 0.69 | 9% |
Sites | SIF-GPP | SIF-CO2-GPP |
---|---|---|
US-Srr | 2.37 | 1.80 |
US-WCr | 1.72 | 1.71 |
US-Syv | 1.86 | 1.86 |
US-PFa | 1.51 | 1.20 |
CA-TP3 | 2.40 | 1.87 |
CA-TP4 | 2.89 | 1.28 |
CA-SCC | 2.09 | 1.45 |
US-EML | 2.11 | 1.26 |
US-PHM | 1.21 | 1.23 |
US-Ro4 | 2.43 | 2.45 |
US-TPD | 3.09 | 2.79 |
US-Los | 2.74 | 2.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, R.; Han, G.; Ma, X.; Sha, Z.; Shi, T.; Xu, H.; Zhang, M. CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity. Remote Sens. 2020, 12, 1377. https://doi.org/10.3390/rs12091377
Qiu R, Han G, Ma X, Sha Z, Shi T, Xu H, Zhang M. CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity. Remote Sensing. 2020; 12(9):1377. https://doi.org/10.3390/rs12091377
Chicago/Turabian StyleQiu, Ruonan, Ge Han, Xin Ma, Zongyao Sha, Tianqi Shi, Hao Xu, and Miao Zhang. 2020. "CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity" Remote Sensing 12, no. 9: 1377. https://doi.org/10.3390/rs12091377
APA StyleQiu, R., Han, G., Ma, X., Sha, Z., Shi, T., Xu, H., & Zhang, M. (2020). CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity. Remote Sensing, 12(9), 1377. https://doi.org/10.3390/rs12091377