Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR)
"> Figure 1
<p>Tunable hyperspectral LiDAR (HSL) system working diagram. AOTF = Acousto-Optic Tunable Filter; APD = Avalanche Photon Diode; A/D Converter = Analog-to-Digital Conversion.</p> "> Figure 2
<p>Leaf observation platform (<span class="html-italic">Amygdalus triloba</span>).</p> "> Figure 3
<p>Passive hyperspectral curve observation.</p> "> Figure 4
<p>Geometry and parameters involved in the radar equation.</p> "> Figure 5
<p>HSL derived spectral profile of leaves from (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span> in different angles.</p> "> Figure 6
<p>HSL derived spectral profile of leaves from (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides</span>, (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span> compared with Analytica Spectra Devices (ASD) spectrometer measurements.</p> "> Figure 6 Cont.
<p>HSL derived spectral profile of leaves from (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides</span>, (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span> compared with Analytica Spectra Devices (ASD) spectrometer measurements.</p> "> Figure 7
<p>Scatter diagrams of the reflectance of five leaf measured by HSL and Analytica Spectra Devices (ASD) spectrometer. (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 7 Cont.
<p>Scatter diagrams of the reflectance of five leaf measured by HSL and Analytica Spectra Devices (ASD) spectrometer. (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 8
<p>The model of reflectance changing with leaf obliquity and wavelength from (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 8 Cont.
<p>The model of reflectance changing with leaf obliquity and wavelength from (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 9
<p>The variation of reflectance with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf,(<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 9 Cont.
<p>The variation of reflectance with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf,(<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 10
<p>The normalized value of reflectance in NIR band (710–1000 nm) with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 10 Cont.
<p>The normalized value of reflectance in NIR band (710–1000 nm) with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 11
<p>The normalized value of reflectance in Red band (650 - 700 nm) with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> "> Figure 11 Cont.
<p>The normalized value of reflectance in Red band (650 - 700 nm) with the increase of incident radian (<b>a</b>) <span class="html-italic">Fraxinus pennsylvanica</span>, (<b>b</b>) <span class="html-italic">Fraxinus pennsylvanica</span> yellow leaf, (<b>c</b>) <span class="html-italic">Eucommia ulmoides,</span> (<b>d</b>) <span class="html-italic">Amygdalus triloba</span>, (<b>e</b>) <span class="html-italic">Magnolia denudate</span>.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Material Preparation and Measurement
2.1.1. Leaf Samples
2.1.2. Hyperspectral LiDAR System
2.1.3. Hyperspectral LiDAR Measurement
2.1.4. ASD Measurement
2.2. Angle Effect Modelling
3. Results
3.1. Reflectance under Different Leaf Obliquity
3.2. HSL vs. ASD Measurements
3.3. Leaf Angle Model
3.3.1. Construction of Leaf Reflectance Model
3.3.2. Echo Intensity Changing with Incident Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, W.; Jiang, C.; Chen, Y.; Hyyppa, J.; Tang, L.; Li, C.; Wang, S.W. A Liquid Crystal Tunable Filter-Based Hyperspectral LiDAR System and Its Application on Vegetation Red Edge Detection. IEEE Geosci. Remote Sens. Lett. 2018, 16, 291–295. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans.Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Sun, J.; Shi, S.; Gong, W.; Yang, J.; Du, L.; Song, S.; Chen, B.; Zhang, Z. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Sci. Rep. 2017, 7, 40362. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Næsset, E.; Kland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Env. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Juan, F.D.; William, C.; Craig, G.; Ramesh, S.; Zhigang, P.; Nima, E.; Abhinav, S.; Darren, H.; Michael, S. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens. 2016, 8, 936. [Google Scholar]
- Chen, Y.; Räikkönen, E.; Kaasalainen, S.; Suomalainen, J.; Hakala, T.; Hyyppä, J.; Chen, R. Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source. Sensors 2010, 10, 7057–7066. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. Estimation of leaf biochemical content using a novel hyperspectral full-waveform LiDAR system. Remote Sens. Lett. 2014, 5, 693–702. [Google Scholar]
- Kaasalainen, S.; Nevalainen, O.; Hakala, T.; Anttila, K. Incidence Angle Dependency of Leaf Vegetation Indices from Hyperspectral Lidar Measurements. Photogramm. Fernerkund. Geoinf. 2016, 2016, 75–84. [Google Scholar] [CrossRef]
- Luo, S.; Cheng, W.; Xiaohuan, X.; Hongcheng, Z.; Dong, L.; Shaobo, X.; Pinghua, W. Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification. Remote Sens. 2016, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Bork, E.W.; Su, J.G. Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. Env. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express. 2012, 20, 7119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Hyyppä, J.; Wang, N.; Jiang, C.; Meng, F.; Tang, L.; Puttonen, E.; Li, C. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter. Sensors 2019, 19, 1620. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Chen, Y.; Yang, Z.; Jiang, C.; Li, W.; Wu, H.; Wen, Z.; Wang, S.; Puttnon, E.; Hyyppä, J. A 91-Channel Hyperspectral LiDAR for Coal/Rock Classification. IEEE Geosci. Remote Sens. Lett. 2019. (early access). [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Chen, Y.; Wu, H.; Li, W.; Zhou, H.; Bo, Y.; Shao, H.; Song, S.; Puttonen, E.; Hyyppä, J. Study of a High Spectral Resolution Hyperspectral LiDAR in Vegetation Red Edge Parameters Extraction. Remote Sens. 2019, 11, 2007. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Chen, Y.; Yang, Z.; Jiang, C.; Li, W.; Wu, H.; Wang, S.; Yang, F.; Chen, J.; Puttonen, E. Feasibility Study on Hyperspectral LiDAR for Ancient Huizhou-Style Architecture Preservation. Remote Sens. 2020, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, C.; Hyyppä, J.; Qiu, S.; Wang, Z.; Tian, M.; Li, W.; Puttonen, E.; Zhou, H.; Feng, Z. Feasibility Study of Ore Classification Using Active Hyperspectral LiDAR. IEEE Geosci. Remote Sens. Lett. 2018, 11, 291–295. [Google Scholar] [CrossRef]
- Pesci, A.; Teza, G. Effects of surface irregularities on intensity data from laser scanning: An experimental approach. Ann. Geophys. 2008. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Balduzzi, M.A.; Van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Coppin, P. The properties of terrestrial laser system intensity for measuring leaf geometries: A case study with conference pear trees (Pyrus Communis). Sensors 2011, 11, 1657–1681. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, S.; Jaakkola, A.; Kaasalainen, M.; Krooks, A.; Kukko, A. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sens. 2011, 3, 2207–2221. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, R.; Danson, F.M.; Ramirez, F.A.; Gunawan, O. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sens. Env. 2013, 132, 32–39. [Google Scholar] [CrossRef]
- Lillesaeter, O. Spectral reflectance of partly transmitting leaves: Laboratory measurements and mathematical modeling. Remote Sens. Env. 1982, 12, 247–254. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 2-Radar Remote Sensing and Surface Scattering and Emission Theory; NASA: Lawrence, KS, USA, 1982. [Google Scholar]
Leaf Samples | Fraxinus pennsylvanica | Eucommia ulmoides | Amygdalus triloba | Fraxinus pennsylvanica (yellow leaf) | Magnolia denudata |
---|---|---|---|---|---|
Photos |
a | b | c | d | f | RMS | R2 | ||
---|---|---|---|---|---|---|---|---|
Green leaf of Fraxinus pennsylvanica | −4.312 | 0.559 | 0.010 | −0.083 | −5.247E-6 | −7.979E-4 | 0.002 | 0.931 |
Yellow leaf of Fraxinus pennsylvanica | −3.191 | 0.356 | 0.008 | −0.121 | −4.295E-6 | −4.543E-4 | 0.002 | 0.869 |
Eucommia ulmoides | −4.434 | 0.426 | 0.011 | −0.016 | −5.593E-6 | −8.240E-4 | 0.002 | 0.929 |
Amygdalus triloba | −4.092 | 0.261 | 0.010 | −0.015 | −5.321E-6 | −4.831E-4 | 0.001 | 0.904 |
Magnolia denudate | −3.527 | 0.400 | 0.008 | −0.060 | −4.462E-6 | −5.999E-4 | 0.001 | 0.912 |
A | RMS | R2 | |||
---|---|---|---|---|---|
650–700 | Green leaf | 0.06926 | −0.21696 | 0.01285 | 0.55284 |
Yellow leaf | 0.16883 | 0.14514 | 0.00286 | 0.81485 | |
710–750 | Green leaf | 0.35832 | −0.03303 | 0.00173 | 0.85779 |
Yellow leaf | 0.37960 | 0.04701 | 0.00074 | 0.93966 | |
760–800 | Green leaf | 0.39642 | −0.02874 | 0.00179 | 0.87742 |
Yellow leaf | 0.039669 | 0.06901 | 0.00083 | 0.93660 | |
810–850 | Green leaf | 0.40019 | −0.03422 | 0.00183 | 0.87861 |
Yellow leaf | 0.39598 | 0.05686 | 0.00050 | 0.96074 | |
860–900 | Green leaf | 0.40850 | −0.03593 | 0.00220 | 0.86267 |
Yellow leaf | 0.38819 | 0.04845 | 0.00059 | 0.9514 | |
910–950 | Green leaf | 0.42176 | −0.04285 | 0.00265 | 0.84906 |
Yellow leaf | 0.39585 | 0.05144 | 0.00063 | 0.94911 | |
960–1000 | Green leaf | 0.42685 | −0.05959 | 0.00251 | 0.86301 |
Yellow leaf | 0.41143 | 0.02694 | 0.00065 | 0.95381 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Huang, H.; Chen, Y.; Qi, J.; Li, W.; Jiang, C.; Wu, H.; Tian, W.; Hyyppä, J. Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR). Remote Sens. 2020, 12, 919. https://doi.org/10.3390/rs12060919
Hu P, Huang H, Chen Y, Qi J, Li W, Jiang C, Wu H, Tian W, Hyyppä J. Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR). Remote Sensing. 2020; 12(6):919. https://doi.org/10.3390/rs12060919
Chicago/Turabian StyleHu, Peilun, Huaguo Huang, Yuwei Chen, Jianbo Qi, Wei Li, Changhui Jiang, Haohao Wu, Wenxin Tian, and Juha Hyyppä. 2020. "Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR)" Remote Sensing 12, no. 6: 919. https://doi.org/10.3390/rs12060919
APA StyleHu, P., Huang, H., Chen, Y., Qi, J., Li, W., Jiang, C., Wu, H., Tian, W., & Hyyppä, J. (2020). Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR). Remote Sensing, 12(6), 919. https://doi.org/10.3390/rs12060919