Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model
"> Figure 1
<p>Flow chart of our oil spill detection method.</p> "> Figure 2
<p>Structure of neural networks in our segmentation method. Blue and green blocks donate encoder parts, which consist of multi convolution layers, here we used depthwise separable convolution, dilated convolution and standard convolution as filter kernel, respectively. Purple-red blocks constitute the decoder part, it outputs a classification map with the same size as original image.</p> "> Figure 3
<p>Polarized parameters extraction. We extracted 13 polarized parameters in total. They are divided into five groups as the position of the box in the figure, each group was input into neural network for classification.</p> "> Figure 4
<p>Convolution kernels for (<b>a</b>) standard kernel, which has a receptive filed of <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math>, and (<b>b</b>) dilated kernel with dilation rate = 2, and its receptive field is <math display="inline"><semantics> <mrow> <mn>7</mn> <mo>×</mo> <mn>7</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Convolution process of transposed convolution layer.</p> "> Figure 6
<p>Three oil spill data used in the experiments. Left side shows the original image, and right side are images processed by Refined Lee Filter. (<b>a1</b>,<b>a2</b>) Image 1 acquired by Radarsat-2, (<b>b1</b>,<b>b2</b>) Image 2 (PR11588) acquired by SIR-C/X-SAR and (<b>c1</b>,<b>c2</b>) Image 3 (PR44327) acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR).</p> "> Figure 7
<p>All the polarized features extracted from Radarsat2 data. (<b>a1</b>–<b>a3</b>) H/A/Alpha decomposition, a1 for entropy, a2 for anisotropy, a3 for alpha. (<b>b1</b>–<b>b4</b>) H/A/Alpha decomposition and Single-Bounce Eigenvalue Relative Difference (SERD), b1 for entropy, b2 for anisotropy, b3 for alpha, b4 for SERD. (<b>c1</b>,<b>c2</b>) Scattering coefficients calculated from scattering matrix, c1 for co-polarized correlation coefficients, c2 for conformity coefficients. (<b>d1</b>–<b>d3</b>) Freeman 3-component decomposition, d1 for double-bounce scattering, d2 for rough surface scattering, d3 for volume scattering. (<b>e1</b>–<b>e4</b>) Yamaguchi 4-component decomposition, e1 for double-bounce scattering, e2 for helix scattering, e3 for rough surface scattering, e4 for volume scattering.</p> "> Figure 8
<p>Simple Linear Iterative Clustering (SLIC) superpixel segmentation results. (<b>a</b>) Image 1, (<b>b</b>) Image 2 and (<b>c</b>) Image 3.</p> "> Figure 9
<p>The results of dark spots area verified by polarized parameters, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1, 4 and 5 represent biogenic look alike and oil spill area of Image 2 and Image 3. (<b>a1</b>–<b>a5</b>) Ground truth, (<b>b1</b>–<b>b5</b>) H/A/Alpha, (<b>c1</b>–<b>c5</b>) H/A/SERD/Alpha, (<b>d1</b>–<b>d5</b>) Scattering Coefficients, (<b>e1</b>–<b>e5</b>) Freeman 3-Component Decomposition, (<b>f1</b>–<b>f5</b>) Yamaguchi 4-Component Decomposition.</p> "> Figure 9 Cont.
<p>The results of dark spots area verified by polarized parameters, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1, 4 and 5 represent biogenic look alike and oil spill area of Image 2 and Image 3. (<b>a1</b>–<b>a5</b>) Ground truth, (<b>b1</b>–<b>b5</b>) H/A/Alpha, (<b>c1</b>–<b>c5</b>) H/A/SERD/Alpha, (<b>d1</b>–<b>d5</b>) Scattering Coefficients, (<b>e1</b>–<b>e5</b>) Freeman 3-Component Decomposition, (<b>f1</b>–<b>f5</b>) Yamaguchi 4-Component Decomposition.</p> "> Figure 10
<p>The results of dark spots area verified by polarized parameters combined with SLIC superpixel segmentation, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1. Images 4 and 5 represent biogenic look-alike and oil spill area of Image 2 and Image 3. (<b>a1</b>–<b>a5</b>) Ground truth, (<b>b1</b>–<b>b5</b>) H/A/Alpha, (<b>c1</b>–<b>c5</b>) H/A/SERD/Alpha, (<b>d1</b>–<b>d5</b>) Scattering Coefficients, (<b>e1</b>–<b>e5</b>) Freeman 3-Component Decomposition, (<b>f1</b>–<b>f5</b>) Yamaguchi 4-Component Decomposition.</p> "> Figure 10 Cont.
<p>The results of dark spots area verified by polarized parameters combined with SLIC superpixel segmentation, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1. Images 4 and 5 represent biogenic look-alike and oil spill area of Image 2 and Image 3. (<b>a1</b>–<b>a5</b>) Ground truth, (<b>b1</b>–<b>b5</b>) H/A/Alpha, (<b>c1</b>–<b>c5</b>) H/A/SERD/Alpha, (<b>d1</b>–<b>d5</b>) Scattering Coefficients, (<b>e1</b>–<b>e5</b>) Freeman 3-Component Decomposition, (<b>f1</b>–<b>f5</b>) Yamaguchi 4-Component Decomposition.</p> "> Figure 11
<p>SLIC superpixel segmentation results with different superpixel numbers. (<b>a</b>) 150, (<b>b</b>) 200, (<b>c</b>) 250, (<b>d</b>) 300, (<b>e</b>) 350, (<b>f</b>) 400.</p> "> Figure 12
<p>The whole classification result of Yamaguchi 4-component parameters. Left: the results without SLIC superpixel; right: the results with SLIC superpixel. (<b>a1</b>,<b>a2</b>) Image 1, (<b>b1</b>,<b>b2</b>) Image 2, (<b>c1</b>,<b>c2</b>) Image 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Framework
2.2. Polarimetric Decomposition
2.2.1. H/A/Alpha Decomposition
2.2.2. Single-Bounce Eigenvalue Relative Difference
2.2.3. Co- and Cross- Polarized Decomposition
2.2.4. Freeman 3-Component Decomposition
2.2.5. Yamaguchi 4-Component Decomposition
2.3. SLIC Superpixel
2.4. Semantic Segmentation Algorithm
2.4.1. Convolutional Layer and Dilated Convolution
2.4.2. Depthwise Separable Convolution with Dilated Kernel
2.4.3. Transposed Convolution
2.4.4. Evaluation Method
3. Experiments and Results
3.1. SAR Data and Preprocessing
3.2. SLIC Superpixel Segmentation
3.3. Oil Spill Classification
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Migliaccio, M.; Nunziata, F.; Montuori, A. A Multifrequency Polarimetric SAR Processing Chain to Observe Oil Fields in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4729–4737. [Google Scholar] [CrossRef]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Solberg, S.; Storvik, G.; Solberg, R.; Volden, E. Automatic Detection of Oil Spills in ERS SAR Images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1916–1924. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pineda, O.; MacDonald, R.; Li, X.; Jackson, C.R.; Pichel, W.G. Oil Spill Mapping and Measurement in the Gulf of Mexico with Textual Classifier Neural Network Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Solberg, S.; Brekke, C.; Husoy, O. Oil Spill Detection in Radarsat and Envisat SAR Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 746–755. [Google Scholar] [CrossRef]
- Yang, C.-S.; Kim, Y.-S.; Ouchi, K.; Na, J.-H. Comparison with L-, C-, and X-band real SAR images and simulation SAR images of spilled oil on sea surface. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009; pp. 673–676. [Google Scholar]
- Wismann, V. Radar Signatures of Mineral Oil Spills Measured by an Airborne Multi-Frequency Radar and the ERS-1 SAR. In Proceedings of the 1993 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 1993, Tokyo, Japan, 18–21 August 1993; pp. 940–942. [Google Scholar]
- Cheng, Y.; Liu, B.Q.; Li, X.; Nunziata, F.; Xu, Q.; Ding, X.; Migliaccio, M.; Pichel, W.G. Monitoring of Oil Spill Trajectories with COSMO-SkyMed X-Band SAR Images and Model Simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2895–2901. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.; Denbina, M.; Minchew, B.; Jones, C.E.; Holt, B. On the Use of Simulated Airborne Compact Polarimetric SAR for Characterizing Oil-Water Mixing of the Deepwater Horizon Oil Spill. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1062–1077. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; He, Y.; Wu, J.; Luo, X. Analysis of the Polarimetric SAR Scattering Properties of Oil-Covered Waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3751–3759. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Cloude, R.; Pottier, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Allain, S.; Lopez-Martinez, C.; Ferro-Famil, L.; Pottier, E. New Eigenvalue-based Parameters for Natural Media Characterization. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2005, Seoul, Korea, 29–29 July 2005; pp. 40–43. [Google Scholar]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5302–5319. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Liang, X.S.; Tsou, J. Comparison of Oil Spill Classifications Using Fully and Compact Polarimetric SAR Images. Appl. Sci. 2017, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: https://arxiv.org/abs/1512.03385v1 (accessed on 10 December 2015).
- Hadji, I.; Wildes, P. What Do We Understand About Convolutional Networks? Available online: https://arxiv.org/abs/1803.08834v1 (accessed on 23 May 2018).
- Yang, Y.; Zhong, Z.; Shen, T.; Lin, Z. Convolutional Neural Networks with Alternatively Updated Clique. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. In Proceedings of the ICLR2014 International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Howard, G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applicatoins. Available online: https://arxiv.org/abs/1704.04861 (accessed on 17 April 2017).
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B. Searching for MobileNetV3. Available online: https://arxiv.org/abs/1905.02244 (accessed on 6 May 2019).
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dialted Convolutions. In Proceedings of the International Conference on Learning Representations 2016, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Opera, S.O.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. Available online: https://arxiv.org/abs/1704.06857 (accessed on 22 April 2018).
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Available online: https://arxiv.org/abs/1802.02611v3 (accessed on 22 August 2018).
- Krestenitis, M.; Orfanids, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from Satellite Images Using Deep Neural Networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, H.; Luo, C.; Qi, H.; Ren, P. Oil Spill Segmentation via Adversarial f-Divergence Learning. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4973–4988. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.-S. Mapping Oil Spills from Dual-Polarized SAR Images Using an Artificial Neural Network: Application to Oil Spill in the Kerch Strait in November 2007. Sensors 2018, 18, 2237. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Malik, J. Learning a Classification Model for Segmentation. In Proceedings of the ICCV 2003 IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1, pp. 10–17. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Derauw, D.; Rana, F.M.; Barbier, C.; Refice, A.; Veneziani, N.; Vitulli, R. Multi-Chromatic Analysis of SAR Images for Coherent Target Detection. Remote Sens. 2014, 6, 8822–8843. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Derauw, D.; Barbier, C.; Rana, F.M.; Refice, A.; Veneziani, N.; Vitulli, R. Multi-Chromatic Analysis of SAR Images for Target Analysis. In Proceedings of the Conference on SAR Image Analysis, Modeling, and Techniques, Dresden, Germany, 24–26 September 2013. [Google Scholar]
- Salberg, A.; Larsen, S. Classification of Ocean Surface Slicks in Simulated Hybrid-Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7062–7073. [Google Scholar] [CrossRef]
- Nunziata, M. Single- and Multi-Polarization Electromagnetic Models for SAR Sea Oil Slick Observation. Ph.D. Thesis, Parthenope University of Naples, Naples, Italy, December 2008. [Google Scholar]
Layer 1 | Filter | Kernel Size | Strides |
---|---|---|---|
Conv 1 | depthwise | 1 | |
Conv 2 | Conv | 2 | |
Conv 3 | depthwise | 1 | |
Conv 4 | Conv | 2 | |
Conv 5 | dilated | 1 | |
Conv 6 | Conv | 2 | |
Conv 7 | Conv | 2 | |
Conv 8 | Conv | 1 | |
Conv 9 | Conv | 3 | |
Conv 10 | Conv | 1 | |
Res 1 | Conv | 4 | |
Res 2 | Conv | 4 | |
Deconv 1 | transposed | 1 | |
Deconv 2 | transposed | 8 | |
Deconv 2_1 | transposed | 4 | |
Deconv 3 | transposed | 2 | |
Deconv 3_1 | transposed | 2 |
Image ID | 137348 | PR11588 | PR44327 |
---|---|---|---|
Radar Sensor | Radarsat-2 | SIR-C/X-SAR | SIR-C/X-SAR |
SAR Band | C | C | C |
Pixel Spacing (m) | |||
Radar Center Frequency (Hz) | |||
Centre Incidence Angle (deg) | 35.287144 | 23.600 | 45.878 |
Parameter | Clean Sea | Look alike | Emulsion | Oil Spill | Ship |
---|---|---|---|---|---|
Entropy | low | high | higher | higher | higher |
Anisotropy | low | low | low | low | low |
Alpha | low | lower | low | low | low |
SERD | high | low | lower | lower | lower |
Correlation Coefficient | high | low | lower | lower | lower |
Conformity Coefficient | high | low | lower | lower | lower |
Freeman Double-Bounce | high | low | low | lower | higher |
Freeman Rough-Surface | high | low | low | low | higher |
Freeman Volume | high | lower | lower | low | higher |
Yamaguchi Double-Bounce | high | low | low | lower | higher |
Yamaguchi Helix | low | lower | lower | lower | high |
Yamaguchi Rough-Surface | high | low | lower | lower | higher |
Yamaguchi Volume | high | lower | lower | low | higher |
Areas | CS | EM | LA | OS | SH |
Training set | 80 | 75 | 82 | 88 | 31 |
Test set | 27 | 25 | 28 | 30 | 12 |
Without SLIC Superpixel | With SLIC Superpixel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Classification | CS | EM | LA | OS | SH | CS | EM | LA | OS | SH |
H/A/Alpha | 94.0% | 70.8% | 84.2% | 85.7% | 10.5% | 95.6% | 88.3% | 89.7% | 93.4% | 39.7% |
H/A/SERD/Alpha | 94.5% | 80.7% | 84.9% | 88.3% | 11.7% | 95.8% | 91.0% | 91.7% | 95.1% | 43.1% |
Scattering coefficients 1 | 94.1% | 27.3% | 82.3% | 80.2% | 6.8% | 94.7% | 85.8% | 84.2% | 90.1% | 41.5% |
Freeman | 95.8% | 80.7% | 82.4% | 90.6% | 60.7% | 96.3% | 91.1% | 91.5% | 95.1% | 48.3% |
Yamaguchi | 96.1% | 81.8% | 85.4% | 94.0% | 75.0% | 96.9% | 94.1% | 94.6% | 96.8% | 70.2% |
Parameters | H/A/Alpha | H/A/SERD/Alpha | Scattering coefficients | Freeman | Yamaguchi |
Without SLIC Superpixel | 69.0% | 72.0% | 58.1% | 82.0% | 86.5% |
With SLIC Superpixel | 81.3% | 83.3% | 79.3% | 84.5% | 90.5% |
Areas | CS | EM | LA | OS | SH |
Without SLIC Superpixel | 94.9% | 68.2% | 83.8% | 87.8% | 32.9% |
With SLIC Superpixel | 95.9% | 90.1% | 90.3% | 94.1% | 48.6% |
Superpixels | 150 | 200 | 250 | 300 | 350 | 400 |
---|---|---|---|---|---|---|
Total MIoU | 87.1% | 88.5% | 91.0% | 90.3% | 90.5% | 86.6% |
Image 1 | Image 2 | Image 3 | ||
---|---|---|---|---|
Pixel Number in Experiments | ||||
Computer Configuration | i5-8250u CPU 8GB | |||
Superpixel Segmentation(s) | 1742 | 576 | 482 | |
CNN Classification with SLIC(s) | H/A/Alpha | 1594 | 135 | 243 |
H/A/Alpha/SERD | 2107 | 186 | 359 | |
Scattering Coefficients | 1023 | 102 | 159 | |
Freeman | 1602 | 133 | 245 | |
Yamaguchi | 2115 | 192 | 361 |
Without SLIC | With SLIC | |
---|---|---|
H/A/Alpha | 59.2 M | 91.3 M |
H/A/Alpha/SERD | 91.3 M | 130 M |
Scattering Coefficients | 33.9 M | 59.2 M |
Freeman | 59.2 M | 91.3 M |
Yamaguchi | 91.3 M | 130 M |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sens. 2020, 12, 944. https://doi.org/10.3390/rs12060944
Zhang J, Feng H, Luo Q, Li Y, Wei J, Li J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sensing. 2020; 12(6):944. https://doi.org/10.3390/rs12060944
Chicago/Turabian StyleZhang, Jin, Hao Feng, Qingli Luo, Yu Li, Jujie Wei, and Jian Li. 2020. "Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model" Remote Sensing 12, no. 6: 944. https://doi.org/10.3390/rs12060944
APA StyleZhang, J., Feng, H., Luo, Q., Li, Y., Wei, J., & Li, J. (2020). Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sensing, 12(6), 944. https://doi.org/10.3390/rs12060944