Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data
"> Figure 1
<p>(<b>Left</b>) The location of the Daya Bay. (<b>Right</b>) An image of the Daya Bay Nuclear Power Station (DNPS) and the Ling Ao Nuclear Power Station (LNPS) from Google Earth.</p> "> Figure 2
<p>Tidal current distribution by the Finite-Volume Coastal Ocean Model around the nuclear power station. (<b>a</b>) Flood tide at 3:00 UTC on January 23, 2019; (<b>b</b>) ebb tide at 3:00 UTC on 1 November 2017.</p> "> Figure 3
<p>The location of Landsat 8 satellite images with a 30-m spatial resolution used in the calculation of the split window model parameters. Red triangles indicate the locations of buoys. Yellow triangles indicate the location of the Day Bay.</p> "> Figure 4
<p>The TIRS Band 10 image and the TIRS Band 11 image. (<b>a</b>,<b>b</b>) The TIRS Band 10 image in South China Sea at 2:40 UTC on March 18, 2018, and (<b>c</b>,<b>d</b>) the TIRS Band 11 image in the coastal sea area around the Daya Bay at 2:45 UTC on March 9, 2018. The red arrows indicate the stripes in the Band 11 image.</p> "> Figure 5
<p>The destriping flow of the Band 11 image in the open ocean: (<b>a</b>) The image before destriping; (<b>b</b>) stripe boundaries; (<b>c</b>) the central position of stripes; (<b>d</b>) destriping; (<b>e</b>) the image after filling in the stripes.</p> "> Figure 6
<p>The destriping flow of the Band 11 image in the coastal area: (<b>a</b>) The image before destriping; (<b>b</b>) stripe boundaries; (<b>c</b>) the central position of the stripes; (<b>d</b>) destriping; (<b>e</b>) the image after filling in the stripes.</p> "> Figure 7
<p>The Sea Surface Temperature (SST) inversion results using the Single Window (SW) algorithm before and after stripe removal: (<b>a</b>) SST before destriping; (<b>b</b>) SST after destriping.</p> "> Figure 8
<p>Correlation diagram between the inversion values and buoys. (<b>a</b>) Radiation Transfer Equation Method (RTM); (<b>b</b>) Single Channel (SC); (<b>c</b>) Mono Window (MW); (<b>d</b>) SW. The fit line indicates the actual linear relationship between the inversion values and buoys.</p> "> Figure 9
<p>The SST retrieved from Landsat 8 in Daya Bay from February 2017 to January 2019. The red pentagram indicates the location of the power stations (DNPS and LNPS). (<b>a</b>) On February 18, 2017; (<b>b</b>) on April 7, 2017; (<b>c</b>) on August 29, 2017; (<b>d</b>) on November 1, 2017; (<b>e</b>) on March 9, 2018; (<b>f</b>) on July 31, 2018; (<b>g</b>) on October 3, 2018; (<b>h</b>) on January 23, 2019.</p> "> Figure 10
<p>The spatial pattern of the Sea Surface Temperature (SST) increase intensity for various tidal conditions at 2:45 UTC based on Landsat 8. The black arrows indicate the size and direction of the surface flow; the colored bars show the SST increase intensity; the red pentagram indicates the location of the power stations (DNPS and LNPS). (<b>a</b>) At the flood tide on February 18, 2017; (<b>b</b>) at the high slack tide on April 7, 2017; (<b>c</b>) at the flood tide on August 29, 2017; (<b>d</b>) at the ebb tide on November 1, 2017; (<b>e</b>) at the flood tide on March 9, 2018; (<b>f</b>) at the high slack tide on July 31, 2018; (<b>g</b>) at the low slack tide on October 3, 2018; (<b>h</b>) at the flood tide on January 23, 2019.</p> "> Figure 10 Cont.
<p>The spatial pattern of the Sea Surface Temperature (SST) increase intensity for various tidal conditions at 2:45 UTC based on Landsat 8. The black arrows indicate the size and direction of the surface flow; the colored bars show the SST increase intensity; the red pentagram indicates the location of the power stations (DNPS and LNPS). (<b>a</b>) At the flood tide on February 18, 2017; (<b>b</b>) at the high slack tide on April 7, 2017; (<b>c</b>) at the flood tide on August 29, 2017; (<b>d</b>) at the ebb tide on November 1, 2017; (<b>e</b>) at the flood tide on March 9, 2018; (<b>f</b>) at the high slack tide on July 31, 2018; (<b>g</b>) at the low slack tide on October 3, 2018; (<b>h</b>) at the flood tide on January 23, 2019.</p> "> Figure 11
<p>The statistics for the area featuring a temperature increase. The vertical axis temperature increase area is in km<sup>2</sup>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. TIRS Data Pre-Processing
- Remove clouds and the land from images. Cloud and land detection are based on the Landsat Collection 1 Level-1 Quality Assessment (QA).
- Calculate the horizontal derivative using the Sobel operator. The Sobel operator first performs weighted smoothing and then engages in differentiation to enhance the edge mutation. It has the capabilities of noise suppression and accurate edge positioning. Since the stripes are vertical, and there are fine stripes and bright spots on the image, the horizontal gradient can be calculated by the vertical edge Sobel operator, as follows:
- Set threshold and extract the boundaries of the stripes. After repeated experiments, it is found that when the edge detection threshold is set to 27, the stripe edge in the image can be extracted completely.
- Determine the central position of the stripes. For each pixel, the gradients with respect to the two nearby pixels in a horizontal direction are calculated. Then, the average of the positive and negative horizontal gradients of all the pixels in the images are calculated, respectively. If the pixel located between the positive and negative horizontal gradients is larger than the corresponding average value, it is considered as the center of the stripe.
- Extracting stripes. If the center of the stripe exists between two boundaries within the certain range, the area between the two boundaries is the stripe.
- Fill in the stripes. When the cell is determined as the stripe, the pixel value is replaced with the average of the surrounding 5*5 window pixels.
2.4. Sea Surface Temperature Inversion Algorithm
2.4.1. Radiation Transfer Equation Method
2.4.2. The Single Channel Algorithm
2.4.3. The Mono Window Algorithm
2.4.4. The Split Window Algorithm
3. Results
3.1. TIRS Image Destriping Results
3.2. Validation of Sea Surface Temperature Algorithms
3.3. Distribution of Warm Drain-Off Water
3.3.1. Characteristics of SST
3.3.2. Distribution of SST Rising Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, S.S.; Zhang, B.; LI, J.S.; Zhang, H.; Shen, Q. Distribution of therm-water pollution of nuclear power plant using the thermal infrared Band of HJ-IRS data-taking Daya Bay as an example. Remote Sens. Inf. 2012, 2, 43–48. [Google Scholar]
- Verones, F.; Hanafiah, M.M.; Pfister, S.; Huijbregts, M.A.J.; Pelletier, G.J.; Koehler, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010, 44, 9364–9369. [Google Scholar] [CrossRef]
- He, L.Y.; Song, X.X.; Yu, F.; Wang, K.; Song, S.Q.; Yu, Z.M. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi. Oceanol. Et Limnol. Sin. 2019, 50, 700–705. [Google Scholar]
- Tang, D.L.; Kester, D.R.; Wang, Z.; Lian, J.; Kawamura, H. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sens. Environ. 2003, 84, 506–515. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Shanmugam, P.; Lee, J.H.; Kang, Y.Q. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Mar. Environ. Res. 2006, 61, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gong, C.; Hu, Y.; Chen, Q. Distribution of thermal discharge from a power station based on HJ-1B and FY-3 thermal infrared data. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, International Symposium on Photoelectronic Detection and Imaging, Beijing, China, 8 September 2011. [Google Scholar]
- Cheng, F.; Zhu, L.; Wu, C.Q.; Wei, J.A. Application of remote sensing data for monitoring seasonal distribution of thermal plume from nuclear power plant: A case study of Yangjiang nuclear power plant. Environ. Prot. 2017, 45, 44–48. [Google Scholar]
- Matthew, M.; Aaron, G.; Allen, L.; Dennis, R. Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar]
- Montanaro, M.; Gerace, A.; Rohrbach, S. Toward an operational stray light correction for the Landsat 8 thermal infrared sensor. Appl. Opt. 2015, 54, 3963. [Google Scholar] [CrossRef]
- United States Geological Survey. Landsat 8. Available online: http://earthexplorer.usgs.gov/ (accessed on 18 November 2019).
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Yu, J.; Tang, D.L.; Wang, S.F.; Lian, J.S.; Wang, Y.S. Changes of water temperature and harmful algal bloom in the Daya Bay in the Northern South China Sea. Mar. Sci. Bull. 2007, 2, 25–33. [Google Scholar]
- Chen, C.Q.; Shi, P.; Mao, Q.W. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant. J. Environ. Sci. Health Part A 2003, 38, 1659–1668. [Google Scholar] [CrossRef]
- Wu, R.H.; Cai, S.Q.; Wang, S.A.; Zhang, W.J. Three-dimensional numerical simulation of tidal curent and residual current at Daya Bay. J. Trop. Oceanogr. 2007, 26, 18–23. [Google Scholar]
- Acharya, T.D.; Yang, I. Exploring Landsat 8. Int. J. ITEngineering Appl. Sci. Res. (IJIEASR) 2015, 4, 4–10. [Google Scholar]
- Li, X.D. Primary validation of Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature in the Taiwan Strait. Taiwan Strait 2011, 3, 336–340. [Google Scholar]
- European Center for Medium Range Weather Forecasts. ERA-Interim. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed on 30 November 2019).
- Chen, C.S.; Liu, H.D.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Chen, Y.X.; Li, X.G.; Tong, F.; Tang, Z.Z.; Yuan, H.R.; Zeng, L.; Chen, P.M. Impact of Dongshanhai artificial reef on hydrodynamics in nearby sea area in Huizhou, Guangdong Province. South China Fish. Sci. 2018, 14, 17–26. [Google Scholar]
- Ottle, C.; Stoll, M. Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data. Int. J. Remote Sens. 1993, 14, 2025–2037. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, S.J.; Zhu, L. Three algorithms of sea surface temperature inversion of Daya Bay based on environmental star HJ_1B data. J. East China Inst. Technol. 2013, 36, 88–92. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 108, 4688. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Mcmillin, L.M. The split window retrieval algorithm for sea surface temperature derived from satellite measurements. Remote Sens. Atmos. Ocean. 1980, 437–455. [Google Scholar]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Ocean. 1998, 103, 27999. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, R. Thermal impact analysis of discharge of circulating cooling water at Daya Bay Nuclear Power Station (DNPS) and Ling Ao Nuclear Power Station (LNPS). Radiat. Prot. 2004, 24, 257–262. [Google Scholar]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat Thermal-Infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Mao, K.B.; Qin, Z.H.; Shi, J.C. Retrieval of Land Surface Temperature of Shandong Peninsula Using MODIS Image and Split Window Algorithm. J. China Univ. Min. Technol. 2005, 34, 46–50. [Google Scholar]
- Zhu, L.; Li, J.; Wu, C.; Yang, B.F.; Li, Q.; Gong, H. Comparison of LST retrieval algorithms between single-channel and split-windows for high-resolution infrared camera. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Cahyono, A.B.; Saptarini, D.; Pribadi, C.B. Estimation of Sea Surface Temperature (SST) Using Split Window Methods for Monitoring Industrial Activity in Coastal Area. Appl. Mech. Mater. 2017, 862, 90–95. [Google Scholar] [CrossRef]
- Robinson, I.S.; Wells, N.C.; Charnock, H. The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborn radiometers. Int. J. Remote Sens. 1984, 5, 19–46. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingake, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.J.; Phzacklea, D. Seasonal changes in heat flux and heat storage in the intertidal mudflat of the Forth Estuary, Scotland. J. Climatol. 1985, 5, 473–485. [Google Scholar] [CrossRef]
No. | Date | Time (UTC) | Landsat Scene ID |
---|---|---|---|
1 | 2017.02.18 | 2:45:51 | LC81210442017049LGN00 |
2 | 2017.04.07 | 2:45:42 | LC81210442017097LGN00 |
3 | 2017.08.29 | 2:46:02 | LC81210442017241LGN00 |
4 | 2017.11.01 | 2:45:14 | LC81210442017305LGN00 |
5 | 2018.03.09 | 2:45:34 | LC81210442018068LGN00 |
6 | 2018.07.31 | 2:45:13 | LC81210442018212LGN00 |
7 | 2018.10.03 | 2:45:41 | LC81210442018276LGN00 |
8 | 2019.01.23 | 2:45:44 | LC81210442019023LGN00 |
No. | Station | Lat | Lon | Available Time |
---|---|---|---|---|
1 | Leizhouxi | 20.49 | 109.46 | 2018.03~2019.01 |
2 | bohe | 21.16 | 110.98 | 2017.12~2019.01 |
3 | Zhapo | 21.52 | 112.22 | 2017.12~2019.01 |
4 | Honghaiwan | 22.29 | 115.24 | 2017.12~2019.01 |
5 | Zhelang | 22.70 | 115.60 | 2017.12~2019.01 |
Atmospheric Model | Ta Estimation Formula |
---|---|
Tropical | 17.9769 + 0.91715To |
Mid-latitude summer | 16.0110 + 0.92621To |
Mid-latitude winter | 19.2704 + 0.91118To |
Standard atmospheric | 25.9396 + 0.88045To |
R2 | ||||
---|---|---|---|---|
Spring | −18.4206 | 1.0619 | 0.0080 | 0.96 |
Summer | 81.6599 | 0.7157 | 0.0080 | 0.66 |
Autumn | −0.6963 | 1.0013 | 0.0083 | 0.93 |
Winter | −33.3589 | 1.1156 | 0.0073 | 0.98 |
Number | Bias (°C) | MAE (°C) | RMSE (°C) | STD (°C) | |
---|---|---|---|---|---|
Destriping Before | 29567 | 0.24 | 0.67 | 0.86 | 0.82 |
Destriping After | 29567 | 0.16 | 0.56 | 0.72 | 0.70 |
Number | Min (°C) | Max (°C) | Bias (°C) | MAE (°C) | RMSE (°C) | STD (°C) | |
---|---|---|---|---|---|---|---|
RTM | 31 | −0.96 | 2.36 | 0.55 | 0.55 | 0.92 | 0.74 |
SC | 31 | −0.87 | 3.87 | 1.04 | 0.83 | 1.44 | 0.99 |
MW | 31 | −3.51 | 2.44 | −0.82 | 1.05 | 1.81 | 1.61 |
SW | 31 | −1.70 | 1.37 | −0.01 | 0.12 | 0.71 | 0.71 |
Number | Bias (°C) | MAE (°C) | RMSE (°C) | STD (°C) | |
---|---|---|---|---|---|
RTM | 13950 | 1.65 | 1.67 | 1.86 | 0.86 |
SC | 13950 | 1.66 | 1.89 | 2.80 | 2.25 |
MW | 13950 | 0.73 | 1.47 | 1.60 | 1.43 |
SW | 13950 | 0.18 | 0.32 | 0.47 | 0.43 |
Number | Bias (°C) | MAE (°C) | RMSE (°C) | STD (°C) | |
---|---|---|---|---|---|
RTM | 594 | 0.58 | 1.44 | 1.78 | 1.68 |
SC | 594 | 3.37 | 3.44 | 3.74 | 1.62 |
MW | 594 | −0.43 | 2.36 | 2.77 | 2.74 |
SW | 594 | −0.30 | 1.19 | 1.60 | 1.57 |
Number | Bias (°C) | MAE (°C) | RMSE (°C) | STD (°C) | |
---|---|---|---|---|---|
RTM | 158 | 1.50 | 1.76 | 2.11 | 1.78 |
SC | 158 | 3.53 | 3.55 | 3.95 | 3.95 |
MW | 158 | 1.38 | 1.88 | 2.35 | 1.91 |
SW | 158 | −0.50 | 0.87 | 1.13 | 1.02 |
Date | Background Temperature (°C) | Tide | Tidal Current Speed (cm/s) | Wind Direction | Wind Speed (m/s) |
---|---|---|---|---|---|
2017.02.18 | 19.27 | Flood tide | 5.19 | Northeast | 1.81 |
2017.04.07 | 25.30 | High slack | 5.65 | Southeast | 0.41 |
2017.08.29 | 28.64 | Flood tide | 5.24 | Northeast | 1.92 |
2017.11.01 | 26.98 | Ebb tide | 7.18 | Northeast | 4.67 |
2018.03.09 | 19.25 | Flood tide | 6.28 | Northeast | 6.71 |
2018.07.31 | 32.19 | High slack | 6.54 | Southwest | 1.65 |
2018.10.03 | 29.79 | Low slack | 4.21 | Northeast | 3.98 |
2019.01.23 | 19.16 | Flood tide | 5.26 | Northeast | 3.09 |
Temperature Rising Range | Levels |
---|---|
< 1 °C | < 1 °C |
(1 °C, 2 °C) | + 1 °C |
(2 °C, 3 °C) | + 2 °C |
(3 °C, 4 °C) | + 3 °C |
(4 °C, 5 °C) | + 4 °C |
(5 °C, 6 °C) | + 5 °C |
>6 °C | + 6 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Yin, X.; Xu, Q.; Chen, Y.; Wang, B. Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data. Remote Sens. 2020, 12, 627. https://doi.org/10.3390/rs12040627
Liu M, Yin X, Xu Q, Chen Y, Wang B. Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data. Remote Sensing. 2020; 12(4):627. https://doi.org/10.3390/rs12040627
Chicago/Turabian StyleLiu, Mengdi, Xiaobin Yin, Qing Xu, Yuxiang Chen, and Bowen Wang. 2020. "Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data" Remote Sensing 12, no. 4: 627. https://doi.org/10.3390/rs12040627
APA StyleLiu, M., Yin, X., Xu, Q., Chen, Y., & Wang, B. (2020). Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data. Remote Sensing, 12(4), 627. https://doi.org/10.3390/rs12040627