Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes
"> Figure 1
<p>The spatial distribution of average MODISA-derived suspended particulate matter (SPM) (<b>a</b>) and total valid pixels (<b>b</b>) in the 43 lakes (>50 km<sup>2</sup>) from 2003 to 2017.</p> "> Figure 2
<p>Resampled time-series of SPM derived from the satellite instruments at the revisit time 3 d (<b>a</b>), 5 d (<b>b</b>), 10 d (<b>c</b>), 16 d (<b>d</b>) from 2003 to 2017. The blue lines are the SPM time series derived by MODISA (1 d).</p> "> Figure 3
<p>(<b>a</b>–<b>d</b>) The difference (UPD: Unbiased percentage difference, %) between MODISA-derived SPM and resampled SPM by revisit time of 3 d, 5 d, 10 d, and 16 d, respectively. Zoom A, B, C, and D represent that the four regions with high UPD values.</p> "> Figure 4
<p>The annual (<b>a</b>) and monthly (<b>b</b>) mean UPD (%) between the MODISA-derived SPM and the regenerated SPM at different revisit time from 2003 to 2017.</p> "> Figure 5
<p>The seasonal mean cloud fraction (<b>a</b>) and coefficient of variation (CV) of SPM (<b>b</b>) for the five large lakes and all lakes from 2003 to 2017.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) The spatial distribution of the average CV of SPM, water occurrence, floating algae index (FAI), and cyanobacteria and macrophyte index (CMI) in the eastern lakes of China between 2003 and 2017. The high CV corresponded to a low water occurrence, high FAI, and low CMI, which can reflect the temporal changes in water inundation, algae, and macrophytes.</p> "> Figure 7
<p>Spatial distribution of averaged SPM derived by MODIS Terra (<b>a</b>) and OLI Landsat-8 (<b>b</b>) during 2013–2018. (<b>c</b>) Histograms corresponded to (<b>a</b>) and (<b>b</b>). (<b>d</b>) Scatters of MODIS-derived and OLI-derived SPM extracted from each scene during 2013–2018. For each scene, point-pairs in 300 stations randomly distributed in Lake Taihu were selected and only the data (N = 6871) with the Satellite zenith angle of MODIS Terra less than 60° were used to compare here.</p> "> Figure 8
<p>(<b>a</b>) Spatial distribution of daily mean SPM estimated by eight scenes from GOCI on 13 October 2013. (<b>b</b>) and (<b>c</b>) was the SPM derived by GOCI and MODISA at ~05:00 UTC, respectively. (<b>d</b>) The mean SPM of each GOCI image on 13 October 2013 and the UPD between the hourly mean SPM and daily mean SPM. Note that most of pixels in Eastern Lake Taihu for the GOCI image were masked due to lower data quality.</p> "> Figure 9
<p>Mean UPD (%) for (<b>a</b>) annual and (<b>b</b>) monthly mean SPM as a function of the number of revisit time in Lake Poyang, Lake Dongting, Lake Taihu, Lake Hongze, Lake Chaohu, and all 43 lakes.</p> "> Figure 10
<p>The annual (<b>a</b>) and climatological monthly (<b>b</b>) trends of SPM derived from MODIS Aqua, regenerated-Sentinel 2, regenerated-Landsat 8, and regenerated-harmonized datasets of Landsat 8 and Sentinel-2 in large lakes in Eastern China from 2003–2017. The dashed lines were the results of a regression. (<b>c</b>) The variations in annual and monthly SPM and SPM derived from data collected on the 15th of each month, and the dashed cyan circles represent the abnormal values away from the monthly value. Notes that <span class="html-italic">r</span> is the Pearson correlation coefficient between the monthly mean SPM and SPM in each mid-each month.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.2.1. SPM Products
2.2.2. Cloud Fraction
2.2.3. Water Occurrence and Water Quality Index
2.3. SPM Products at Different Temporal Resolutions
3. Results
3.1. SPM Products for Different Temporal Resolutions
3.2. Spatial and Temporal Differences in SPM Derived from Different Temporal Resolutions
3.3. Driving Factors of Spatiotemporal Differences for SPM at Different Temporal Resolutions
4. Discussion
4.1. Accuracy and Uncertainty
4.2. Temporal Resolution Requirements for the Development of Long-Term Quality Water Products
4.3. Implications for the Long-Term Observations of Lakes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, N.; Revenga, C.; Echeverria, J. Managing Water for People and Nature. Science 2001, 292, 1071–1072. [Google Scholar] [CrossRef]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef]
- Adrian, R.; Reilly, C.M.O.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Peres-Neto, P. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol. Oceanogr. 2008, 53, 728–742. [Google Scholar] [CrossRef]
- Jassby, A.D.; Reuter, J.E.; Goldman, C.R. Determining long-term water quality change in the presence of climate variability: Lake Tahoe (U.S.A.). Can. J. Fish. Aquat.Sci. 2003, 60, 1452–1461. [Google Scholar] [CrossRef]
- Posch, T.; Köster, O.; Salcher, M.M.; Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Chang. 2012, 2, 809. [Google Scholar] [CrossRef]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef]
- Chen, X.; Shang, S.; Lee, Z.; Qi, L.; Yan, J.; Li, Y. High-frequency observation of floating algae from AHI on Himawari-8. Remote Sens. Environ. 2019, 227, 151–161. [Google Scholar] [CrossRef]
- Doxaran, D.; Lamquin, N.; Park, Y.-J.; Mazeran, C.; Ryu, J.-H.; Wang, M.; Poteau, A. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2014, 146, 36–48. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.G.; Duan, H.T.; Feng, L.; Ma, R.H.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and Limitations of Current and Upcoming Satellite Systems. In Advances in Watershed Science and Assessment; Younos, T., Parece, T.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 111–140. [Google Scholar] [CrossRef]
- International Ocean-Colour Coordinating Group (IOCCG). Earth Observations in Support of Global Water Quality Monitoring; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2018. [Google Scholar]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.M.; Ma, R.H.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2010, 23, 15–35. [Google Scholar] [CrossRef]
- Pahlevan, N.; Balasubramanian, S.; Sarkar, S.; Franz, B. Toward Long-Term Aquatic Science Products from Heritage Landsat Missions. Remote Sens. 2018, 10, 1337. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Cross-Sensor Continuity of Satellite-Derived Water Clarity in the Gulf of Mexico: Insights Into Temporal Aliasing and Implications for Long-Term Water Clarity Assessment. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1761–1772. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.H.; Duan, H.T.; Shen, M.; Boss, E.; Cao, Z.G. Inversion of inherent optical properties in optically complex waters using sentinel-3A/OLCI images: A case study using China’s three largest freshwater lakes. Remote Sens. Environ. 2019, 225, 328–346. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Li, J. Can MODIS Land Reflectance Products be Used for Estuarine and Inland Waters? Water Resour. Res. 2018, 54, 3583–3601. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hu, C.M. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef]
- Maritorena, S.; d’Andon, O.H.F.; Mangin, A.; Siegel, D.A. Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote Sens. Environ. 2010, 114, 1791–1804. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C. Comparison of Valid Ocean Observations Between MODIS Terra and Aqua Over the Global Oceans. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1575–1585. [Google Scholar] [CrossRef]
- Gregg, W.W.; Casey, N.W. Sampling biases in MODIS and SeaWiFS ocean chlorophyll data. Remote Sens. Environ. 2007, 111, 25–35. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Algorithm for remote sensing of tropospheric aerosol from MODIS. NASA MODIS Algorithm Theor. Basis Doc. Goddard Space Flight Cent. 1998, 85, 3–68. [Google Scholar]
- Shenglei, W.; Junsheng, L.; Bing, Z.; Qian, S.; Fangfang, Z.; Zhaoyi, L. A simple correction method for the MODIS surface reflectance product over typical inland waters in China. Int. J. Remote Sens. 2016, 37, 6076–6096. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Qin, B.; Zhu, G.; Zhang, Y.; Shi, K.; Li, Y.; Shi, Y.; Chen, L. High Temporal Resolution Monitoring of Suspended Matter Changes from GOCI Measurements in Lake Taihu. Remote Sens. 2019, 11, 985. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, K.; Zhou, Y.; Liu, X.; Qin, B. Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens. Environ. 2016, 173, 109–121. [Google Scholar] [CrossRef]
- Roughgarden, J.; Running, S.W.; Matson, P.A. What Does Remote Sensing Do For Ecology? Ecology 1991, 72, 1918–1922. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Schott, J.R.; Gerace, A.; Woodcock, C.E.; Wang, S.X.; Zhu, Z.; Wynne, R.H.; Blinn, C.E. The impact of improved signal-to-noise ratios on algorithm performance: Case studies for Landsat class instruments. Remote Sens. Environ. 2016, 185, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.; Vanhellemont, Q.; Dogliotti, A.; Nechad, B.; Pringle, N.; Zande, D.V.d. New opportunities and challenges for high resolution remote sensing of water colour. In Proceedings of the Ocean Optics XXIII, Victoria, BC, Canada, 23–28 October 2016. [Google Scholar]
Instrument | Satellite | Duration | GSD (m) | Revisit Time | Number of Bands |
---|---|---|---|---|---|
GOCI | COMS | 2011– | 500 | 1 h | 8 |
AHI | Himawari 8 | 2015– | 500, 1000, 2000 | 10 min | 1, 3, 2 |
PMS | GaoFen 4 | 2016– | 50 | 20 s | 5 |
MODIS | Terra/Aqua | 1999– | 250, 500, 1000 | 1 d (0.5 d) 1 | 2, 5, 12 |
VIIRS | NPP/NOAA-20 | 2011 | 375,750 | 1 d | 3, 11 |
OLCI | Sentinel 3 A/B | 2016– | 300 | 3 d | 21 |
MSI | Sentinel 2 A/B | 2015– | 10,20,60 | 10 d (5 d) 1 | 12 |
OLI | Landsat 8 | 2013– | 30 | 16 d | 7 |
ETM+ | Landsat 7 | 1999– | 30 | 16 d | 6 |
WFV | GF-1/2 | 2013– | 30 | 4 d | 4 |
HRG | SPOT-5 | 2002– | 2.5 | 26 d | 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Ma, R.; Duan, H.; Xue, K.; Shen, M. Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes. Remote Sens. 2019, 11, 2785. https://doi.org/10.3390/rs11232785
Cao Z, Ma R, Duan H, Xue K, Shen M. Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes. Remote Sensing. 2019; 11(23):2785. https://doi.org/10.3390/rs11232785
Chicago/Turabian StyleCao, Zhigang, Ronghua Ma, Hongtao Duan, Kun Xue, and Ming Shen. 2019. "Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes" Remote Sensing 11, no. 23: 2785. https://doi.org/10.3390/rs11232785
APA StyleCao, Z., Ma, R., Duan, H., Xue, K., & Shen, M. (2019). Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes. Remote Sensing, 11(23), 2785. https://doi.org/10.3390/rs11232785