Sensitivity of Radar Altimeter Waveform to Changes in Sea Ice Type at Resolution of Synthetic Aperture Radar
"> Figure 1
<p>Beaufort Sea study area: Sentinel-1 images are shown in blue and the red lines represent the CryoSat-2 altimeter ground tracks. The inset in the upper left corner shows the location of the study area in the Arctic.</p> "> Figure 2
<p>Example waveforms for different surface types. (<b>a</b>) Lead, (<b>b</b>) first-year and (<b>c</b>) multiyear sea ice. Note the difference in the scaling of the y-axis.</p> "> Figure 3
<p>Example of waveform evolution over a multiyear sea ice floe 2018-02-18. (<b>a</b>) HV SAR image with altimeter footprint in blue rectangles [Contains Copernicus Sentinel data 2018] and (<b>b</b>) waveforms in different colors for distinction and freeboard as a solid black line.</p> "> Figure 4
<p>Waveform parameters of different ice types covering all winter seasons. (<b>a</b>) Pulse peakiness, (<b>b</b>) scaled mean power, (<b>c</b>) stack standard deviation and (<b>d</b>) mean HV backscatter intensities of altimeter footprint. Solid lines represent a kernel density estimate from measured histograms.</p> "> Figure 5
<p>Waveform parameters of FYI for the different winter seasons. (<b>a</b>) Pulse peakiness, (<b>b</b>) scaled mean power, (<b>c</b>) stack standard deviation and (<b>d</b>) mean HV backscatter intensities of altimeter footprint. Solid lines represent a kernel density estimate from measured histograms.</p> "> Figure 6
<p>Waveform parameters of MYI for the different winter seasons. (<b>a</b>) Pulse peakiness, (<b>b</b>) scaled mean power, (<b>c</b>) stack standard deviation and (<b>d</b>) mean HV backscatter intensities of altimeter footprint. Solid lines represent a kernel density estimate from measured histograms.</p> "> Figure 7
<p>Freeboard distributions for (<b>a</b>) FYI and MYI of all winter seasons, (<b>b</b>) FYI and (<b>c</b>) MYI for the three winter seasons. Solid lines are kernel density estimates of the histograms.</p> "> Figure 8
<p>Waveform evolution and SAR imagery over a large ridge feature on 2016-03-15 with time separation less than five minutes. (<b>a</b>) SAR HV image with blue rectangles marking the altimeter footprints, (<b>b</b>,<b>c</b>) HH and HV mean backscatter with standard deviation interval in light blue and minimum and maximum values in grey, (<b>d</b>) waveforms, (<b>e</b>) mean inverse power and freeboard and (<b>f</b>) SSD and PP. [Contains Copernicus Sentinel data 2016]</p> "> Figure 9
<p>Evolution of waveforms over the ridge in vicinity of the large negative freeboard value.</p> "> Figure 10
<p>Waveform evolution and SAR imagery over a large MYI floe on 22 February 2018 with time separation of about 20 min. (<b>a</b>) SAR HH image with blue rectangles marking the altimeter footprints, (<b>b</b>,<b>c</b>) HH and HV mean backscatter with standard deviation interval in light blue and minimum and maximum values in grey, (<b>d</b>) waveforms, (<b>e</b>) mean inverse power and freeboard and (<b>f</b>) SSD and PP. [Contains Copernicus Sentinel data 2018]</p> "> Figure 11
<p>Waveform evolution and SAR imagery over a small MYI floe embedded in FYI on 2018-02-24 with time separation of about 10 min. The small MYI floe is split in two by a high backscatter FYI feature. (<b>a</b>) SAR HV image with blue rectangles marking the altimeter footprints, (<b>b</b>,<b>c</b>) HH and HV mean backscatter with standard deviation interval in light blue and minimum and maximum values in grey, (<b>d</b>) waveforms, (<b>e</b>) mean inverse power and freeboard and (<b>f</b>) SSD and PP. [Contains Copernicus Sentinel data 2018]</p> ">
Abstract
:1. Introduction
2. Data
2.1. Sentinel-1 A/B
2.2. CryoSat-2
3. Methods
3.1. SAR Image and Waveform Parameters
3.2. Freeboard
3.3. Sample Selection
4. Results
4.1. Waveform Parameter Statistics
4.2. Local Waveform Variability
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dierking, W. Sea Ice Monitoring by Synthetic Aperture Radar. Oceanography 2013, 26. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res. 2018, 62, 1203–1225. [Google Scholar] [CrossRef]
- Alexandrov, V.; Sandven, S.; Wahlin, J.; Johannessen, O.M. The relation between sea ice thickness and freeboard in the Arctic. Cryosphere 2010, 4, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Zygmuntowska, M.; Khvorostovsky, K.; Helm, V.; Sandven, S. Waveform classification of airborne synthetic aperture radar altimeter over Arctic sea ice. Cryosphere 2013, 7, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Zygmuntowska, M. Arctic Sea Ice Altimetry—Advances and Current Uncertainties. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2014. [Google Scholar]
- Rinne, E.; Similä, M. Utilisation of CryoSat-2 SAR altimeter in operational ice charting. Cryosphere 2016, 10, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, J.; Zhang, X.; Meng, J.; Ke, C. Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1948–1952. [Google Scholar] [CrossRef]
- Raney, R. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Boy, F.; Desjonqueres, J.D.; Picot, N.; Moreau, T.; Raynal, M. CryoSat-2 SAR-Mode Over Oceans: Processing Methods, Global Assessment, and Benefits. IEEE Trans. Geosci. Remote Sens. 2017, 55, 148–158. [Google Scholar] [CrossRef]
- Kildegaard Rose, S. Measurements of Sea ice by Satellite and Ariborne Altimetry. Ph.D. Thesis, DTU Space—National Space Institute, Lyngby, Denmark, 2013. [Google Scholar]
- Passaro, M.; Müller, F.L.; Dettmering, D. Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images. Adv. Space Res. 2018, 62, 1610–1625. [Google Scholar] [CrossRef]
- Longepe, N.; Thibaut, P.; Vadaine, R.; Poisson, J.C.; Guillot, A.; Boy, F.; Picot, N.; Borde, F. Comparative Evaluation of Sea Ice Lead Detection Based on SAR Imagery and Altimeter Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4050–4061. [Google Scholar] [CrossRef]
- Ulander, L.M.H. Interpretation of Seasat radar-altimeter data over sea ice using near-simultaneous SAR imagery. Int. J. Remote Sens. 1987, 8, 1679–1686. [Google Scholar] [CrossRef]
- Fetterer, F.M.; Laxon, S.; Johnson, D.R. A comparison of Geosat altimeter and synthetic aperture radar measurements over east Greenland pack ice. Int. J. Remote Sens. 1991, 12, 569–583. [Google Scholar] [CrossRef]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Near-real-time Arctic sea ice thickness and volume from CryoSat-2. Cryosphere 2016, 10, 2003–2012. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J.; Cheng, B.; Vihma, T.; Arkett, M.; Carrieres, T. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. Cryosphere 2012, 6, 1507–1526. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Komarov, A.S.; Buehner, M. Detection of First-Year and Multi-Year Sea Ice from Dual-Polarization SAR Images Under Cold Conditions. IEEE Trans. Geosci. Remote Sens. 2019, 1–15. [Google Scholar] [CrossRef]
- Kaur, S.; Ehn, J.K.; Barber, D.G. Pan-arctic winter drift speeds and changing patterns of sea ice motion: 1979–2015. Polar Rec. 2018, 54, 303–311. [Google Scholar] [CrossRef]
- Scagliola, M. CryoSAT Footprints; Technical Report, Aresys Technical Note. 2013. Available online: https://earth.esa.int/documents/10174/125271/CryoSat_Footprints_TN_v1.1.pdf/2a5d996b-8b77-4d1c-ae7b-fbf93848c35d;jsessionid=B1FF8C50A1B0F2A0879F6FA028844644.eodisp-prod4040?version=1.0 (accessed on 29 September 2019).
- European Space Agenncy. CryoSAT-2 Product Handbook; C2-LI-ACS-ESL-5319; European Space Agenncy: Paris, France, 2018. [Google Scholar]
- Onstott, R.G. SAR and Scatterometer Signatures of Sea Ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; Chapter 5; pp. 73–102. [Google Scholar]
- Fetterer, F.M.; Drinkwater, M.R.; Jezek, K.J.; Laxon, S.W.C.; Onstott, R.G.; Ulander, L.M.H. Sea Ice Altimetry. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; Chapter 7; pp. 111–135. [Google Scholar]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef] [Green Version]
- Quartly, G.D.; Rinne, E.; Passaro, M.; Andersen, O.B.; Dinardo, S.; Fleury, S.; Guillot, A.; Hendricks, S.; Kurekin, A.A.; Müller, F.L.; et al. Retrieving Sea Level and Freeboard in the Arctic: A Review of Current Radar Altimetry Methodologies and Future Perspectives. Remote Sens. 2019, 11, 881. [Google Scholar] [CrossRef]
- Brockley, D.J. CryoSat2: L2 Design Summary Document; CS-DD-MSL-GS-2002; 2019. Available online: https://earth.esa.int/documents/10174/125272/CryoSat-L2-Design-Summary-Document (accessed on 29 September 2019).
- Landy, J.C.; Tsamados, M.; Scharien, R.K. A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes From Heterogeneous Sea Ice Surfaces. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4164–4180. [Google Scholar] [CrossRef] [Green Version]
- Ricker, R.; Hendricks, S.; Perovich, D.K.; Helm, V.; Gerdes, R. Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett. 2015, 42, 4447–4455. [Google Scholar] [CrossRef]
- Fons, S.W.; Kurtz, N.T. Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns. Cryosphere 2019, 13, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.; Vallelonga, P.; Simonsen, S.B.; Sørensen, L.S.; Forsberg, R.; Dahl-Jensen, D.; Hirabayashi, M.; Goto-Azuma, K.; Hvidberg, C.S.; Kjær, H.A.; et al. Greenland 2012 melt event effects on CryoSat-2 radar altimetry. Geophys. Res. Lett. 2015, 42, 3919–3926. [Google Scholar] [CrossRef]
- Drinkwater, M.R. Ku-band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment. J. Geophys. Res. 1991, 96, 4555. [Google Scholar] [CrossRef]
- Ulander, L. Observations Of Ice Types In Satellite Altimeter Data. In Proceedings of the International Geoscience and Remote Sensing Symposium, Remote Sensing: Moving Toward the 21st Century, Edinburgh, UK, 12–16 September 1988. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Davidson, M.W.J. Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 529–536. [Google Scholar] [CrossRef]
- Tonboe, R.T.; Pedersen, L.T.; Haas, C. Simulation of the CryoSat-2 satellite radar altimeter sea ice thickness retrieval uncertainty. Can. J. Remote Sens. 2010, 36, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Ricker, R.; Hendricks, S.; Helm, V.; Gerdes, R. Classification of CryoSat-2 Radar Echoes. In Towards an Interdisciplinary Approach in Earth System Science: Advances of a Helmholtz Graduate Research School; Lohmann, G., Meggers, H., Unnithan, V., Wolf-Gladrow, D., Notholt, J., Bracher, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 149–158. [Google Scholar] [CrossRef] [Green Version]
- Wernecke, A.; Kaleschke, L. Lead detection in Arctic sea ice from CryoSat-2: Quality assessment, lead area fraction and width distribution. Cryosphere 2015, 9, 1955–1968. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140157. [Google Scholar] [CrossRef]
Date | Number of Images | Number of Sequences | Mean Time Lag [min] | Min/Max Time Lag [min] |
---|---|---|---|---|
Feb 2016 | 3 | 1 | 61 | - |
Mar 2016 | 12 | 6 | 27 | 3/54 |
Nov 2016 | 6 | 3 | 46 | 28/69 |
Dec 2016 | 9 | 4 | 27 | 2/40 |
Jan 2017 | 5 | 2 | 44 | 27/61 |
Jan 2018 | 4 | 2 | 55 | 53/56 |
Feb 2018 | 28 | 14 | 33 | 4/74 |
Mar 2018 | 6 | 4 | 44 | 26/75 |
Total | 73 | 36 |
Season | Number of FYI Samples | Number of MYI Samples | Number of Large Leads Samples |
---|---|---|---|
2015/2016 | 789 | 4048 | 837 |
2016/2017 | 4217 | 1782 | 10 |
2017/2018 | 2582 | 5033 | 86 |
Total | 7588 | 10862 | 933 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldenhoff, W.; Heuzé, C.; Eriksson, L.E.B. Sensitivity of Radar Altimeter Waveform to Changes in Sea Ice Type at Resolution of Synthetic Aperture Radar. Remote Sens. 2019, 11, 2602. https://doi.org/10.3390/rs11222602
Aldenhoff W, Heuzé C, Eriksson LEB. Sensitivity of Radar Altimeter Waveform to Changes in Sea Ice Type at Resolution of Synthetic Aperture Radar. Remote Sensing. 2019; 11(22):2602. https://doi.org/10.3390/rs11222602
Chicago/Turabian StyleAldenhoff, Wiebke, Céline Heuzé, and Leif E. B. Eriksson. 2019. "Sensitivity of Radar Altimeter Waveform to Changes in Sea Ice Type at Resolution of Synthetic Aperture Radar" Remote Sensing 11, no. 22: 2602. https://doi.org/10.3390/rs11222602
APA StyleAldenhoff, W., Heuzé, C., & Eriksson, L. E. B. (2019). Sensitivity of Radar Altimeter Waveform to Changes in Sea Ice Type at Resolution of Synthetic Aperture Radar. Remote Sensing, 11(22), 2602. https://doi.org/10.3390/rs11222602