Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning
"> Figure 1
<p>Training and test sites along the Antarctic coastline.</p> "> Figure 2
<p>U-Net architecture with a down-sampling block (red arrows) encoder and the corresponding up-sampling block (green arrows) decoder. Skip connections are in black and dropout is indicated by yellow arrows. Black numbers indicate image size and the number of feature channels.</p> "> Figure 3
<p>Filters with indicated image size in pixels. Filter size decreases from left to right whereas the number of filters increases from 32, 64, 128, 256 to 512. For clearness, only a few exemplary filters are shown.</p> "> Figure 4
<p>Flowchart of the processing chain to extract Antarctic glacier and ice shelf fronts separated in a per-processing, training, and post-processing block as well as the final accuracy assessment. Abbreviations: DEM: digital elevation model, S1: Sentinel-1, GRD EW: Extra wide swath Level-1 ground range detected S1 product.</p> "> Figure 5
<p>Extracted coastlines for training and test sites in June 2018. Training sites (<b>a</b>) Shackleton Ice Shelf and (<b>b</b>) Victoria Land. Enlarged views of further training sites, Sulzberger Ice Shelf with Land Glacier (<b>c</b>) and Wilkes Land (<b>d</b>). ADD coastline for Sulzberger Ice Shelf as white line. Selected magnifications of test sites Marie Byrd Land (<b>e</b>), Oats Land (<b>f</b>), Wordie Ice Shelf (<b>g</b>) and Ekstromisen Ice Shelf (<b>h</b>). The square dot in the small overview map indicates the location. Sentinel-1 data in RGB: HH, HV, HV/HH. Used Sentinel-1 scenes are listed in <a href="#app1-remotesensing-11-02529" class="html-app">Table S1</a>.</p> "> Figure 6
<p>Extracted time series along the Getz Ice Shelf. (<b>A</b>) Continuous advance of the DeVicq Glacier. (<b>B</b>) Part of a stable coastline. (<b>C</b>) Front of the Beakley Glacier showing a calving event. Front of Getz 1 with wrong delineation in (<b>D</b>) and calving event in (<b>E</b>). Sentinel-1 scene from 2018-07-08. RGB: HH, HV, HV/HV.</p> "> Figure 7
<p>Calving front fluctuations in meters along the Getz Ice Shelf relative to May 2017. The advance/retreat is calculated as the median of all transect measurements along each front. Positive values indicate calving front advance, negative values retreat.</p> ">
Abstract
:1. Introduction
2. Study Areas
3. Input Data
3.1. Sentinel-1 Data
3.2. Antarctic TanDEM-X
3.3. Training Labels
4. Method
4.1. Pre-Processing SAR Data
- Apply Orbit File;
- Thermal noise removal;
- Radiometric calibration;
- Geometric terrain correction with TanDEM-X 90 m;
- Stacking of HH, HV, HH/HV, and TanDEM-X 90 m.
4.2. U-Net Architecture for Image Segmentation
4.3. Training
4.4. Post-Processing
4.5. Time Series Generation
5. Accuracy Assessment
5.1. Classification Accuracy
5.2. Error Estimation
5.3. Time Series Evaluation
6. Results
6.1. Mapping Results
6.2. Time Series Getz Ice Shelf
7. Discussion
7.1. Coastline Extraction
7.2. Time Series of Getz Ice Shelf
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fürst, J.J.; Durand, G.; Gillet-Chaulet, F.; Tavard, L.; Rankl, M.; Braun, M.; Gagliardini, O. The safety band of Antarctic ice shelves. Nat. Clim. Chang. 2016, 6, 479–482. [Google Scholar] [CrossRef]
- Baumhoer, C.; Dietz, A.; Dech, S.; Kuenzer, C. Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics—A Review. Remote Sens. 2018, 10, 1445. [Google Scholar] [CrossRef]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Mason, D.C.; Davenport, I.J. Accurate and efficient determination of the shoreline in ERS-1 SAR images. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1243–1253. [Google Scholar] [CrossRef]
- Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. Int. J. Remote Sens. 2017, 38, 355–370. [Google Scholar] [CrossRef]
- Nicholls, K.W.; Østerhus, S.; Makinson, K.; Gammelsrød, T.; Fahrbach, E. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Jezek, K.C. A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery. Photogramm. Eng. Remote Sens. 2004, 70, 605–616. [Google Scholar] [CrossRef]
- Leigh, S.; Wang, Z.; Clausi, D.A. Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Alonso, M.T.; López-Martínez, C.; Mallorquí, J.J.; Salembier, P. Edge enhancement algorithm based on the wavelet transform for automatic edge detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 222–235. [Google Scholar] [CrossRef]
- Javed, U.; Riaz, M.M.; Ghafoor, A.; Cheema, T.A. Fuzzy active contours based SAR image segmentation. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013; pp. 17–21. [Google Scholar]
- Liu, Z.; Li, F.; Li, N.; Wang, R.; Zhang, H. A Novel Region-Merging Approach for Coastline Extraction From Sentinel-1A IW Mode SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 324–328. [Google Scholar] [CrossRef]
- König, M.; Winther, J.-G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys. 2001, 39, 1–27. [Google Scholar] [CrossRef]
- Rau, F.; Braun, M.; Saurer, H.; Goßmann, H.; Kothe, G.; Weber, F.; Ebel, M.; Beppler, D. Monitoring multi-year snow cover dynamics on the Antarctic Peninsula using SAR imagery. Polarforschung 2000, 67, 27–40. [Google Scholar]
- Sohn, H.-G.; Jezek, K.C. Mapping ice sheet margins from ERS-1 SAR and SPOT imagery. Int. J. Remote Sens. 1999, 20, 3201–3216. [Google Scholar] [CrossRef]
- Fahnestock, M.; Bindschadler, R.; Kwok, R.; Jezek, K. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science 1993, 262, 1530–1534. [Google Scholar] [CrossRef]
- Krieger, L.; Floricioiu, D. Automatic calving front delienation on TerraSAR-X and Sentinel-1 SAR imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7. [Google Scholar]
- Kussul, N.; Lavreniuk, M.; Shelestov, A.; Novikov, A.; Yailymov, B. Large Scale Crop Classification Using Deep Learning Approach. Cybern. Syst. Anal. 2016, 52, 127–138. [Google Scholar]
- Wang, L.; Scott, K.A.; Xu, L.; Clausi, D.A. Sea Ice Concentration Estimation During Melt From Dual-Pol SAR Scenes Using Deep Convolutional Neural Networks: A Case Study. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4524–4533. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Cheng, D.; Meng, G.; Cheng, G.; Pan, C. SeNet: Structured edge network for sea–land segmentation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 247–251. [Google Scholar] [CrossRef]
- Mohajerani, Y.; Wood, M.; Velicogna, I.; Rignot, E. Detection of Glacier Calving Margins with Convolutional Neural Networks: A Case Study. Remote Sens. 2019, 11, 74. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, L.; Huang, L. Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: A deep learning approach. Cryosphere 2019, 13, 1729–1741. [Google Scholar] [CrossRef]
- Ferrigno, J.G.; Williams, R.S.; Foley, K.M. Coastal-change and glaciological map of the Saunders Coast area, Antarctica: 1972–97. Ann. Glaciol. 2004, 39, 245–250. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice Flow of the Antarctic Ice Sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, S.; Zwally, H.J. Ice-shelf topography and structure determined using satellite-radar altimetry and Landsat imagery. Ann. Glaciol. 1989, 12, 162–169. [Google Scholar] [CrossRef]
- Jacobs, S.; Giulivi, C.; Dutrieux, P.; Rignot, E.; Nitsche, F.; Mouginot, J. Getz Ice Shelf melting response to changes in ocean forcing. J. Geophys. Res. Ocean. 2013, 118, 4152–4168. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice-shelf melting around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Konrad, H.; Shepherd, A.; Gilbert, L.; Hogg, A.E.; McMillan, M.; Muir, A.; Slater, T. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 2018, 11, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Ressel, R.; Frost, A.; Lehner, S. Comparing automated sea ice classification on single-pol and dual-pol terrasar-x data. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3442–3445. [Google Scholar]
- Moen, M.-A.; Doulgeris, A.P.; Anfinsen, S.N.; Renner, A.H.H.; Hughes, N.; Gerland, S.; Eltoft, T. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts. Cryosphere 2013, 7, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Wesche, C.; Dierking, W. From ice shelves to icebergs: Classification of calving fronts, iceberg monitoring and drift simulation. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 274–277. [Google Scholar]
- Ressel, R.; Singha, S. Comparing near coincident space borne C and X band fully polarimetric sar data for arctic sea ice classification. Remote Sens. 2016, 8, 198. [Google Scholar] [CrossRef]
- Dierking, W.; Wesche, C. C-Band Radar Polarimetry—Useful for Detection of Icebergs in Sea Ice? IEEE Trans. Geosci. Remote Sens. 2014, 52, 25–37. [Google Scholar] [CrossRef]
- Lea, J.M.; Mair, D.W.F.; Rea, B.R. Evaluation of existing and new methods of tracking glacier terminus change. J. Glaciol. 2014, 60, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Rosanova, C.E.; Lucchitta, B.K.; Ferrigno, J.G. Velocities of Thwaites Glacier and smaller glaciers along the Marie Byrd Land coast, West Antarctica. Ann. Glaciol. 1998, 27, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Ferrigno, J.G.; Williams, R.S., Jr.; Rosanova, C.E.; Lucciiitta, B.K.; Swithinbank, C. Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat imagery. Ann. Glaciol. 1998, 27, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Miles, B.W.J.; Stokes, C.R.; Jamieson, S.S.R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2016, 2, e1501350. [Google Scholar] [CrossRef]
Training Sites | Test Sites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy measure | Sulzberger | Victoria Land | Wilkes Land | Shackleton | Marie Byrd Land | Oats Land | Ekstromisen | Wordie | Mean Train | Mean Test | |
ice | precision | 0.85 | 0.89 | 0.87 | 0.92 | 0.91 | 0.92 | 0.91 | 0.85 | 0.88 | 0.90 |
recall | 0.85 | 0.98 | 0.92 | 0.96 | 0.94 | 0.91 | 0.94 | 0.91 | 0.93 | 0.93 | |
f1-score | 0.85 | 0.93 | 0.89 | 0.94 | 0.93 | 0.91 | 0.93 | 0.88 | 0.90 | 0.91 | |
water | precision | 0.79 | 0.97 | 0.91 | 0.96 | 0.92 | 0.91 | 0.94 | 0.90 | 0.91 | 0.92 |
recall | 0.86 | 0.87 | 0.86 | 0.92 | 0.90 | 0.92 | 0.90 | 0.84 | 0.88 | 0.89 | |
f1-score | 0.83 | 0.92 | 0.88 | 0.94 | 0.91 | 0.91 | 0.92 | 0.87 | 0.89 | 0.90 |
Training Sites | Test Sites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Measured Coastline | Sulzberger | Victoria Land | Wilkes Land | Shackleton | Marie Byrd Land | Oats Land | Ekstromisen | Wordie | Mean Train | Mean Test | |
mean | complete | 267 | 112 | 153 | 72 | 118 | 162 | 126 | 210 | 151 | 154 |
front | 421 | 174 | 208 | 80 | 171 | 119 | 172 | 338 | 221 | 200 | |
stable | 46 | 68 | 127 | 49 | 53 | 70 | 62 | 235 | 73 | 105 | |
median | complete | 8 | -31 | -13 | -27 | -7 | 4 | -8 | 3 | -16 | -2 |
front | 20 | -56 | 19 | -32 | -9 | 1 | 6 | 2 | -12 | 0 | |
stable | -2 | -25 | -61 | -22 | -4 | 5 | -12 | 15 | -28 | 1 | |
ADD | complete | 1539 | - | - | - | 416 | - | - | - | - | - |
front | 3098 | - | - | - | 313 | - | - | - | - | - | |
stable | 180 | - | - | - | 186 | - | - | - | - | - | |
A/F | complete | 121 | 103 | 35 | 54 | 108 | 104 | 66 | 153 | 78 | 108 |
Distance (Absolute Mean) to Manual Reference (m) | abs. metrics (m) | ||||||
---|---|---|---|---|---|---|---|
05-2017 | 07-2017 | 12-2017 | 03-2018 | 07-2018 | mean | sd | |
Beakley | 34 | 41 | 71 | 98 | 56 | 60 | 26 |
DeVicq | 43 | 185 | 91 | 87 | 91 | 99 | 52 |
Getz 1 | 72 | 237 | 433 | 1018 | 1103 | 573 | 464 |
Getz 2 | 36 | 23 | 101 | 79 | 79 | 64 | 33 |
Getz 3 | 48 | 31 | 76 | 44 | 53 | 50 | 16 |
Nereson | 149 | 43 | 72 | 134 | 60 | 92 | 47 |
No. 1 | 44 | 29 | 63 | 61 | 82 | 56 | 20 |
No. 2 | 40 | 29 | 45 | 77 | 58 | 50 | 18 |
Vorneberger/Hulbe | - | 156 | 193 | 164 | 132 | 161 | 75 |
Distance (Median) to Manual Reference (m) | abs. metrics (m) | ||||||
---|---|---|---|---|---|---|---|
05-2017 | 07-2017 | 12-2017 | 03-2018 | 07-2018 | mean | sd | |
Beakley | −17 | −30 | −66 | −91 | −49 | 51 | 29 |
DeVicq | 5 | 42 | −24 | −50 | −52 | 35 | 20 |
Getz 1 | −37 | −50 | −146 | −75 | −1231 | 308 | 518 |
Getz 2 | −29 | −9 | −84 | −78 | −73 | 55 | 33 |
Getz 3 | −20 | 8 | −64 | −36 | −38 | 33 | 21 |
Nereson | −32 | 5 | −43 | −107 | −49 | 47 | 37 |
No. 1 | −23 | −19 | −71 | −58 | −71 | 48 | 26 |
No. 2 | −12 | 9 | −48 | −71 | −47 | 37 | 26 |
Vorneberger/Hulbe | - | −5 | −97 | −73 | −65 | 60 | 39 |
Glacier/Ice Shelf | m/yr | R2 |
---|---|---|
Beakley | −170 ±29 | 0.24 |
DeVicq | 726 ± 20 | 0.95 |
Getz 1 | 37 ± 518 | 0.00 |
Getz 2 | 222 ± 33 | 0.82 |
Getz 3 | 463 ± 21 | 0.99 |
Nereson | 23 ± 37 | 0.23 |
No. 1 | 52 ± 26 | 0.77 |
No. 2 | 141 ± 32 | 0.98 |
Vorneberger/Hulbe | 232 ± 39 | 0.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumhoer, C.A.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning. Remote Sens. 2019, 11, 2529. https://doi.org/10.3390/rs11212529
Baumhoer CA, Dietz AJ, Kneisel C, Kuenzer C. Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning. Remote Sensing. 2019; 11(21):2529. https://doi.org/10.3390/rs11212529
Chicago/Turabian StyleBaumhoer, Celia A., Andreas J. Dietz, C. Kneisel, and C. Kuenzer. 2019. "Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning" Remote Sensing 11, no. 21: 2529. https://doi.org/10.3390/rs11212529
APA StyleBaumhoer, C. A., Dietz, A. J., Kneisel, C., & Kuenzer, C. (2019). Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning. Remote Sensing, 11(21), 2529. https://doi.org/10.3390/rs11212529