UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for Maize Evapotranspiration Mapping in the North China Plain
"> Figure 1
<p>Location and treatment division of research field: (<b>a</b>) location of research field in China; (<b>b</b>) treatment zones and locations of sampling plots, and (<b>c</b>) sampling sites in a plot. Each treatment zone had one sample plot and each sample plot had five sample sites.</p> "> Figure 2
<p>Hierarchical framework integrating the data obtained from an unmanned aerial vehicle (UAV) remote sensing system and ground measurements into the FAO-56 dual crop coefficient method. LAI, leaf area index; CWSI, crop water stress index; NDVI, normalized difference vegetation index; Kcb, basal crop coefficient; Ks, water stress coefficient; CET, cumulative evapotranspiration; VIs, vegetation indices; WB, soil–water balance.</p> "> Figure 3
<p>Schematic diagram of the UAV multispectral remote sensing system developed in this study.</p> "> Figure 4
<p>Daily reference evapotranspiration (ET0), average daily air temperature (Ta), and canopy temperature (Tc) during the studied period.</p> "> Figure 5
<p>Seasonal variation of NDVI (normalized difference vegetation index) and LAI (leaf area index) under different treatments during the vegetation to early maturation stages. V, R, and M represent the vegetative, reproductive, and maturation stages, respectively.</p> "> Figure 6
<p>Comparison of the Kcb values calculated by using two methods in three different treatments: TRT 1 (<b>a</b>), TRT 2 (<b>b</b>) and TRT 3 (<b>c</b>). The Kcb-NDVI values were retrieved from regression model (Equations (10) and (11)) of Kcb vs. NDVI, and Kcb-Tab were calculated by the modified FAO-56 method (Equations (4) and (5)).</p> "> Figure 7
<p><span class="html-italic">K<sub>s</sub></span> obtained by using <span class="html-italic">CWSI</span>, <span class="html-italic">T<sub>c ratio</sub></span>, and <span class="html-italic">soil moisture data</span> for (<b>a</b>) TRT 1, (<b>b</b>) TRT 2, and (<b>c</b>) TRT 3 from 6 to 29 August 2017. The depths (mm) of individual irrigation (I) and precipitation (P) events are plotted as vertical bars.</p> "> Figure 8
<p>Scatterplots of ET obtained using two stress coefficient methods vs. ET obtained by modified FAO-56 dual crop coefficient method in three treatments from 6 to 29 August 2017. Methods include CWSI (<b>a</b>), <span class="html-italic">T<sub>c ratio</sub></span> (<b>b</b>). Black dotted line is the 1:1 line. The regression relation, coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), and index of agreement (d) are also shown.</p> "> Figure 9
<p>Maize evapotranspiration maps retrieved by combining CWSI-TCARI/RDVI (Equation (14) and (15)) and Kcb-NDVI (Equation (10) and (11)) regression models. (<b>a</b>) and (<b>b</b>) are evapotranspiration maps for the reproductive (DOY 217 and DOY221) stages. (<b>c</b>) and (<b>d</b>) are the evapotranspiration maps for the maturation (DOY231 and DOY241) stages.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Framework and Parameters for Assimilating Remote Sensing Data into FAO-56 Crop Coefficient Method
2.2.1. Meteorological Factors and Soil Water Content
2.2.2. Measurement of Maize Parameters
2.2.3. The Modified FAO-56 Dual Crop Coefficient Method
2.2.4. UAV (Unmanned Aerial Vehicle) Multispectral System, Data Collection, and VI (Vegetation Index) Calculation
2.2.5. Crop Coefficient Estimation Using Reflectance Data
2.2.6. Evapotranspiration Comparison and Statistical Analysis
3. Results
3.1. Meteorological Conditions and Maize Status
3.2. Kcb and Ks Calculated by Different Methosd
3.3. Model Selection for Estimating Crop ET
3.4. Maize Evapotranspiration Maps Based on UAV Multispectral Remote Sensing Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belaqziz, S.; Khabba, S.; Er-Raki, S.; Jarlan, L.; Le Page, M.; Kharrou, M.H.; Adnani, M.E.; Chehbouni, A. A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agric. Water Manag. 2013, 119, 1–9. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Ferreira, M. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, L.A.; Casaroli, D.; Junior, J.A.; Pego Evangelista, A.W. Evapotranspiration: A scientometric analysis. Cientifica 2019, 47, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and drainage paper No. 56. Rome Food Agric. Organ. U. N. 1998, 56, 26–40. [Google Scholar]
- Pereira, L.; Allen, R.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Kilic, A.; Allen, R.; Kjaersgaard, J.; Huntington, J.; Kamble, B.; Trezza, R.; Ratcliffe, I. Operational Remote Sensing of ET and Challenges. Evapotranspiration—Remote Sens. Model. 2012. [Google Scholar] [CrossRef] [Green Version]
- Gontia, N.K.; Tiwari, K.N. Estimation of Crop Coefficient and Evapotranspiration of Wheat (Triticum aestivum) in an Irrigation Command Using Remote Sensing and GIS. Water Resour. Manag. 2009, 24, 1399–1414. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Da Silva, B.B.; Bezerra, J.R.C.; Sofiatti, V.; Dos Santos, C.A.C. Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil. Agric. Water Manag. 2012, 107, 86–93. [Google Scholar] [CrossRef]
- Bausch, W.C.; Neale, C. Crop Coefficients Derived from Reflected Canopy Radiation: A Concept. Trans. ASAE 1987, 30, 703–709. [Google Scholar] [CrossRef]
- Hunsaker, D.; Barnes, E.; Clarke, T.R.; Fitzgerald, G.; Pinter, P.J., Jr. Cotton irrigation scheduling using remotely sensed and FAO-S6 basal crop coefficients. Trans. ASAE 2005, 48, 1395–1407. [Google Scholar] [CrossRef]
- Campos, I.; Balbontín, C.; González-Piqueras, J.; González-Dugo, M.P.; Neale, C.M.U.; Calera, A. Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards. Agric. Water Manag. 2016, 165, 141–152. [Google Scholar] [CrossRef]
- Sadler, E.J.; Bauer, P.J.; Busscher, W.J. Site-Specific Analysis of a Droughted Corn Crop: I. Growth and Grain Yield. Agron. J. 2000, 92, 395–402. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.; Ahmed, N.; Idso, S.; Reginato, R.; Daughtry, C. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 24, 1–14. [Google Scholar] [CrossRef]
- Bellvert, J.; Adeline, K.; Baram, S.; Pierce, L.; Sanden, B.; Smart, D. Monitoring Crop Evapotranspiration and Crop Coefficients over an Almond and Pistachio Orchard Throughout Remote Sensing. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Walters, D.; Kovacs, J.M. Applications of Low Altitude Remote Sensing in Agriculture upon Farmers’ Requests—A Case Study in Northeastern Ontario, Canada. PLoS ONE 2014, 9, e112894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping In Irrigated Wheat Fields of a Semi-Arid Region. Remote Sens. 2010, 2. [Google Scholar] [CrossRef]
- Allan, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Tasumi, M.; Allen, R.G.A.; Duchemin, B. Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manag. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Han, W.; Shao, G.; Ma, D.; Zhang, H.; Wang, Y.; Niu, Y. Estimating Method of Crop Coefficient of Maize Based on UAV Multispectral Remote Sensing. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 134–143. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Hoedjes, J.; Ezzahar, J.; Duchemin, B.; Jacob, F. Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agric. Water Manag. 2008, 95, 309–321. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.R.J.; Reginato, R.J.; Pinter, P. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Li, L.; Nielsen, D.C.; Yu, Q.; Ma, L.; Ahuja, L. Evaluating the Crop Water Stress Index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain. Agric. Water Manag. 2010, 97, 1146–1155. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Merlin, O.; Er-Raki, S.; Khabba, S.; Escorihuela, M.J. Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agric. Water Manag. 2018, 208, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Taghvaeian, S.; Trout, T.J.; Comas, L.H. Comparison of canopy temperature-based water stress indices for maize. Agric. Water Manag. 2015, 156, 51–62. [Google Scholar] [CrossRef]
- Bausch, W.; Trout, T.; Buchleiter, G. Evapotranspiration adjustments for deficit-irrigated corn using canopy temperature: A concept. Irrig. Drain. 2011, 60, 682–693. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sens. 2019, 11. [Google Scholar] [CrossRef]
- Heermann, D.F.; Hein, P.R. Performance characteristics of self-propelled center-pivot sprinkler irrigation system. Trans. ASAE 1968, 11, 11–15. [Google Scholar]
- Zhao, N.-N.; Liu, Y.; Cai, J.-B. Calculation of crop coefficient and water consumption of summer maize. Shuili Xuebao/J. Hydraul. Eng. 2010, 41, 953–959. [Google Scholar]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Lv, Y.; Li, B. Soil Science; China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Idso, S.; Jackson, R.; Ehrler, W.; Mitchell, S. A Method for Determination of Infrared Emittance of Leaves. Ecology 1969, 50, 899. [Google Scholar] [CrossRef]
- Allen, R. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- González-Dugo, M.P.; Mateos, L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D.; Wang, H.; Hao, W.; Mei, X. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 90–98. [Google Scholar] [CrossRef]
- Jensen, M.; Allen, R. Evaporation, Evapotranspiration, and Irrigation Water Requirements; American Society of Civil Engineers: Reston, WV, USA, 2016; Volume 2016, pp. 1–744. [Google Scholar]
- Rouse, J.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Haboudane, D. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Trout, T.; Johnson, L.; Gartung, J. Remote Sensing of Canopy Cover in Horticultural Crops. HortScience 2008, 43. [Google Scholar] [CrossRef]
- Johnson, L.F.; Trout, T.J. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Elnmer, A.; Khadr, M.; Kanae, S.; Tawfik, A. Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agric. Water Manag. 2019, 213, 682–692. [Google Scholar] [CrossRef]
- French, N.A.; Hunsaker, J.D.; Bounoua, L.; Karnieli, A.; Luckett, E.W.; Strand, R. Remote Sensing of Evapotranspiration over the Central Arizona Irrigation and Drainage District, USA. Agronomy 2018, 8. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Glenn, E.; Neale, C.; Hunsaker, D.; Nagler, P. Vegetation Index-Based Crop Coefficients to Estimate Evapotranspiration by Remote Sensing in Agricultural and Natural Ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Diarra, A.; Jarlan, L.; Er-Raki, S.; Le Page, M.; Aouade, G.; Tavernier, A.; Boulet, G.; Ezzahar, J.; Merlin, O.; Khabba, S. Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa. Agric. Water Manag. 2017, 193, 71–88. [Google Scholar] [CrossRef]
- Allen, L.H.; Pan, D.; Boote, K.J.; Pickering, N.B.; Jones, J.W. Carbon Dioxide and Temperature Effects on Evapotranspiration and Water Use Efficiency of Soybean. Agron. J. 2003, 95, 1071–1081. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Guo, N.; Li, Y.; Jian, S.; Yu, K. Determining the Canopy Water Stress for Spring Wheat Using Canopy Hyperspectral Reflectance Data in Loess Plateau Semiarid Regions. Spectrosc. Lett. 2015, 48, 492–498. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Vazifedoust, M.; Bahrami, M. Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients. Agric. Water Manag. 2018, 208, 95–106. [Google Scholar] [CrossRef]
- Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Rallo, G. Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach. Water Resour. Manag. 2013, 27, 4877–4895. [Google Scholar] [CrossRef]
- Vanino, S.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Shi, X.; Han, W.; Zhao, T.; Tang, J. Decision Support System for Variable Rate Irrigation Based on UAV Multispectral Remote Sensing. Sensors 2019, 19. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
Treatment | Applied Water Depth/mm | |||
---|---|---|---|---|
Late Vegetative (07.04–07.28) | Reproductive (07.29–08.20) | Maturation (08.21–09.07) | Total | |
TRT 1 | 188 (100%) | 132 (100%) | 82 (100%) | 402 |
TRT 2 | 158 (84%) | 91 (69%) | 23 (28%) | 272 |
TRT 3 | 158 (84%) | 125 (95%) | 43 (52%) | 326 |
TRT 4 | 158 (84%) | 128 (97%) | 43 (52%) | 329 |
TRT 5 | 158 (84%) | 124 (94%) | 82 (100%) | 365 |
Parameters | Value | Source | |
---|---|---|---|
Soil texture | sand | 80.7% | observed |
powder | 13.7% | observed | |
clay | 5.6% | observed | |
Average field hold capacity (θfc) | 0.13 m3/m−3 | observed | |
Average permanent wilting point (θwp) | 0.056 m3m−3 | observed | |
Average soil bulk density | 1.56 g/m3 | observed | |
Maximum crop height | 2.73 m | observed | |
Maximum effective root depth (Zr, max) | 0.1 m | FAO-56 [6] | |
Minimum effective root depth (Zr, min) | 1 m | FAO-56 [2] | |
The fraction of available soil water (p) | 0.65 | Zhao et al. [41] | |
The threshold water content (θj) | 0.084 m3m−3 | observed | |
canopy extinction coefficient for solar radiation (k) | 0.7 | Ding et al. [42] | |
NDVImax (maximum NDVI value at full vegetation cover) | 0.87 | observed | |
NDVImin (minimum NDVI value of bare soil) | 0.07 | observed |
Treatment | Ks-CWSI | Ks-Tc ratio | Ks-FAO |
---|---|---|---|
TRT 1 | 0.94 | 0.89 | 1 |
TRT 2 | 0.72 | 0.81 | 0.66 |
TRT 3 | 0.90 | 0.88 | 0.88 |
Time | TRT 1 | TRT 2 | TRT 3 | |||
---|---|---|---|---|---|---|
Mean(mm) | CV (%) | Mean (mm) | CV (%) | Mean (mm) | CV (%) | |
DOY 217 | 6.72 | 10 | 6.91 | 8 | 7.20 | 8 |
DOY 221 | 6.41 | 8 | 5.72 | 12 | 6.68 | 7 |
DOY 231 | 5.05 | 11 | 4.23 | 16 | 4.94 | 10 |
DOY 241 | 2.59 | 13 | 1.33 | 34 | 2.12 | 18 |
Treatment | VIs (mm) | WB (mm) |
---|---|---|
TRT1 | 72.4 | 75 |
TRT2 | 61.9 | 53 |
TRT3 | 72 | 67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Han, W.; Zhang, L. UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for Maize Evapotranspiration Mapping in the North China Plain. Remote Sens. 2019, 11, 2519. https://doi.org/10.3390/rs11212519
Tang J, Han W, Zhang L. UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for Maize Evapotranspiration Mapping in the North China Plain. Remote Sensing. 2019; 11(21):2519. https://doi.org/10.3390/rs11212519
Chicago/Turabian StyleTang, Jiandong, Wenting Han, and Liyuan Zhang. 2019. "UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for Maize Evapotranspiration Mapping in the North China Plain" Remote Sensing 11, no. 21: 2519. https://doi.org/10.3390/rs11212519
APA StyleTang, J., Han, W., & Zhang, L. (2019). UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for Maize Evapotranspiration Mapping in the North China Plain. Remote Sensing, 11(21), 2519. https://doi.org/10.3390/rs11212519