Comparison of Continuous In-Situ CO2 Measurements with Co-Located Column-Averaged XCO2 TCCON/Satellite Observations and CarbonTracker Model Over the Zugspitze Region
"> Figure 1
<p>Locations of GAW Global station ZSF and TCCON sites Zugspitze and Garmisch with rectangles representing the spatial coverage of XCO<sub>2</sub> levels extracted in this study for satellite measurements (red) and CarbonTracker-modeled results (blue).</p> "> Figure 2
<p>Monthly CO<sub>2</sub> series of all measurements/data products shown as colored points with fitted curves (colored lines) consisting of STL-decomposed trend and seasonal components, divided into CO<sub>2</sub> (upper panel) and XCO<sub>2</sub> (lower panel).</p> "> Figure 3
<p>Offsets of six different CO<sub>2</sub> and XCO<sub>2</sub> data sets of this study (monthly fitted curves, STL-decomposed trend plus seasonal components) relative to CO<sub>2_INSITU_ZSF</sub>.</p> "> Figure 4
<p>Annual mean growth rates derived from all seven CO<sub>2</sub> and XCO<sub>2</sub> series in this study (STL-decomposed trends, black points, and lines). Colored boxplots represent all 12 values of growth rates from monthly averages.</p> "> Figure 5
<p>Seasonal cycles from STL-decomposed seasonal components of the different CO<sub>2</sub> and XCO<sub>2</sub> series of this study.</p> "> Figure 6
<p>Scatter plots of annual mean growth rates from STL trend components in (<b>a</b>) CO<sub>2_INSITU_ZSF</sub> and (<b>b</b>) CO<sub>2_INSITU_ZSF_ADVS</sub> versus CO<sub>2</sub>/XCO<sub>2</sub> from other measurement data sets. Pearson’s product-moment correlation coefficients (<span class="html-italic">r</span>) are listed accordingly for each pair. The significance levels are shown in symbols as 0.001 (***), 0.01 (**), 0.05 (*), and 0.1 (.). The 95% confidence intervals are shown as error bars on both the x and y-axis with dashed lines representing the 1:1 line.</p> "> Figure A1
<p>Histogram of STL-decomposed remainder components from all CO<sub>2</sub> and XCO<sub>2</sub> data sets of this study. Red dashed line shows the mean of each distribution.</p> "> Figure A2
<p>Scatter plots of annual mean growth rates from STL trend components in (<b>a</b>) CO<sub>2_CT_merge_L6-10</sub> and (<b>b</b>) XCO<sub>2_CT_merge_L1-25</sub> versus CO<sub>2</sub>/XCO<sub>2</sub> measurements. Pearson’s product-moment correlation coefficients (<span class="html-italic">r</span>) are listed accordingly for each pair. The significance levels are shown in symbols as 0.001 (***), 0.01 (**), and 0.05 (*). The 95% confidence intervals are shown as error bars on both x- and y-axis with dashed lines representing the 1:1 line.</p> ">
Abstract
:1. Introduction
- Can a consistent data processing routine be successfully applied to both continuous in-situ and column-averaged CO2 measurements for comparisons with increased representativeness?
- Are the surface and satellite measurements comparable even though they are representative of a single measurement site or a designated region/column average?
- If significant differences are detected, what are the specific differences in annual growth rates and seasonal amplitudes?
2. CO2/XCO2 Data Sets
2.1. Surface In-Situ Measurements
2.2. TCCON
2.3. Satellite
2.4. CarbonTracker
3. Methods
3.1. Data Integration
3.2. Data Processing
3.3. Data Analysis
4. Results
4.1. Time-Series of CO2 and XCO2
4.2. Annual Growth Rates
4.3. Seasonal Amptliudes
5. Discussion
5.1. Inter-Annual Variation in Trend
5.2. Correlation of Annual Growth Rates
5.3. Seasonality
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Measurement Technique | Offset from CO2_insitu_ZSF (ppm ± 95% CI) | Mean Annual Growth Rate (ppm yr−1 ± 95% CI) | Mean Seasonal Amplitude (ppm ± 95% CI) |
---|---|---|---|
CO2_INSITU_ZSF | − | 2.18 ± 0.10 | 13.08 ± 0.52 |
CO2_INSITU_ZSF_ADVS | −0.66 ± 0.15 | 2.20 ± 0.09 | 10.93 ± 0.45 |
CO2_CT_merge_L6-10 | 0.01 ± 0.17 | 2.21 ± 0.06 | 11.05 ± 0.28 |
XCO2_CT_merge_L1-25 | −2.36 ± 0.32 | 2.15 ± 0.04 | 6.36 ± 0.18 |
XCO2_SAT_merge | −1.17 ± 0.38 | 2.13 ± 0.06 | 6.94 ± 0.22 |
XCO2_TCCON_Garmisch | −1.95 ± 0.43 | 2.33 ± 0.08 | 6.58 ± 0.19 |
XCO2_TCCON_Zugspitze | −1.03 ± 1.01 | 2.48 ± 0.16 | 5.22 ± 0.14 |
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Core Writing Team: Geneva, Switzerland, 2014; p. 151. ISBN 978-929-169-143-2. [Google Scholar]
- Dlugokencky, E.; Tans, P. Trends in Atmospheric Carbon Dioxide. NOAA/ESRL. Available online: www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 21 October 2019).
- Schultz, M.G.; Akimoto, H.; Bottenheim, J.; Buchmann, B.; Galbally, I.E.; Gilge, S.; Helmig, D.; Koide, H.; Lewis, A.C.; Novelli, P.C.; et al. The Global Atmosphere Watch reactive gases measurement network. Elem. Sci. Anthr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Toon, G.; Blavier, J.; Washenfelder, R.; Wunch, D.; Keppel-Aleks, G.; Wennberg, P.; Connor, B.; Sherlock, V.; Griffith, D.; Deutscher, N.; et al. Total Column Carbon Observing Network (TCCON). In Advances in Imaging, OSA Technical Digest (CD). Opt. Soc. Am. 2009, JMA3. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, T.; Kaneko, Y.; Kuze, A.; Kondo, K. Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT). Enabling Sens. Platf. Technol. Spaceborne Remote Sens. 2005, 5659, 73–80. [Google Scholar] [CrossRef]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). Earth Obs. Syst. 2015, 9607, 960702. [Google Scholar] [CrossRef]
- Yuan, Y.; Ries, L.; Petermeier, H.; Steinbacher, M.; Gómez-Peláez, A.J.; Leuenberger, M.C.; Schumacher, M.; Trickl, T.; Couret, C.; Meinhardt, F.; et al. Adaptive selection of diurnal minimum variation: A statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations. Atmos. Meas. Tech. 2018, 11, 1501–1514. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Paniagua, I.Y.; Lowry, D.; Clemitshaw, K.C.; Fisher, R.E.; France, J.L.; Lanoisellé, M.; Ramonet, M.; Nisbet, E.G. Diurnal, seasonal, and annual trends in atmospheric CO2 at southwest London during 2000–2012: Wind sector analysis and comparison with Mace Head, Ireland. Atmos. Environ. 2015, 105, 138–147. [Google Scholar] [CrossRef]
- Burrows, J.P.; Hölzle, E.; Goede, A.P.H.; Visser, H.; Fricke, W. SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut. 1995, 35, 445–451. [Google Scholar] [CrossRef]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission Objectives and Measurement Modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Aumann, H.H.; Miller, C.R. Atmospheric infrared sounder (AIRS) on the earth observing system. Adv. Next Gener. Satell. 1995, 2583, 332–343. [Google Scholar] [CrossRef]
- Miao, R.; Lu, N.; Yao, L.; Zhu, Y.; Wang, J.; Sun, J. Multi-Year Comparison of Carbon Dioxide from Satellite Data with Ground-Based FTS Measurements (2003–2011). Remote Sens. 2013, 5, 3431–3456. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.; Gong, W.; Han, G.; Xiang, C. Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON. Remote Sens. 2017, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.C.; Randerson, J.T. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. 2004, 109, 419. [Google Scholar] [CrossRef] [Green Version]
- Schibig, M.F.; Mahieu, E.; Henne, S.; Lejeune, B.; Leuenberger, M.C. Intercomparison of in situ NDIR and column FTIR measurements of CO2 at Jungfraujoch. Atmos. Chem. Phys. 2016, 16, 9935–9949. [Google Scholar] [CrossRef] [Green Version]
- Shim, C.; Lee, J.; Wang, Y. Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. Atmos. Environ. 2013, 79, 853–860. [Google Scholar] [CrossRef]
- Nalini, K.; Uma, K.N.; Sijikumar, S.; Tiwari, Y.K.; Ramachandran, R. Satellite- and ground-based measurements of CO2 over the Indian region: Its seasonal dependencies, spatial variability, and model estimates. Int. J. Remote Sens. 2018, 39, 7881–7900. [Google Scholar] [CrossRef]
- Sánchez, M.L.; Pérez, I.A.; Buchwitz, M.; García, M.A. XCO2 SCIAMACHY Total Column and CO2 Ground Inter-comparison Results in the Spanish Plateau. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010; Lacoste-Francis, H., Ed.; ESA Communications: Noordwijk, The Netherlands, 2010; ISBN 978-929-221-250-6. [Google Scholar]
- Warneke, T.; Yang, Z.; Olsen, S.; Körner, S.; Notholt, J.; Toon, G.C.; Velazco, V.; Schulz, A.; Schrems, O. Seasonal and latitudinal variations of column averaged volume-mixing ratios of atmospheric CO2. Geophys. Res. Lett. 2005, 32, L03808. [Google Scholar] [CrossRef] [Green Version]
- Warneke, T.; Petersen, A.K.; Gerbig, C.; Jordan, A.; Rödenbeck, C.; Rothe, M.; Macatangay, R.; Notholt, J.; Schrems, O. Co-located column and in situ measurements of CO2 in the tropics compared with model simulations. Atmos. Chem. Phys. 2010, 10, 5593–5599. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Ries, L.; Petermeier, H.; Trickl, T.; Leuchner, M.; Couret, C.; Sohmer, R.; Meinhardt, F.; Menzel, A. On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016. Atmos. Chem. Phys. 2019, 19, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Blavier, J.F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef] [Green Version]
- Sussmann, R.; Schäfer, K. Infrared spectroscopy of tropospheric trace gases: Combined analysis of horizontal and vertical column abundances. Appl. Opt. 1997, 36, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Sussmann, R.; Rettinger, M. TCCON Data from Zugspitze (DE), Release GGG2014.R1 [Data set]. CaltechDATA 2018, r1. [Google Scholar] [CrossRef]
- Sussmann, R.; Rettinger, M. TCCON data from Garmisch (DE), Release GGG2014.R2 [Data set]. CaltechDATA 2018, r2. [Google Scholar] [CrossRef]
- Buchwitz, M.; Reuter, M.; Schneising, O.; Noël, S.; Gier, B.; Bovensmann, H.; Burrows, J.P.; Boesch, H.; Anand, J.; Parker, R.J.; et al. Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016. Atmos. Chem. Phys. 2018, 18, 17355–17370. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Pollock, H.R.; Rosenberg, R.; Chapsky, L.; Lee, R.A.M.; Oyafuso, F.A.; Frankenberg, C.; O’Dell, C.W.; Bruegge, C.J.; Doran, G.B.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.P.; Pétron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, M.; Deutscher, N.M.; Sherlock, V.; Palm, M.; Warneke, T.; Notholt, J. Retrieval of XCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON. Atmos. Meas. Tech. 2016, 9, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0. ERA Report, ECMWF. 2011, p. 23. Available online: https://www.ecmwf.int/node/8174 (accessed on 31 October 2019).
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Pickers, P.A.; Manning, A.C. Investigating bias in the application of curve fitting programs to atmospheric time series. Atmos. Meas. Tech. 2015, 8, 1469–1489. [Google Scholar] [CrossRef] [Green Version]
- Lindqvist, H.; O’Dell, C.W.; Basu, S.; Boesch, H.; Chevallier, F.; Deutscher, N.; Feng, L.; Fisher, B.; Hase, F.; Inoue, M.; et al. Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 2015, 15, 13023–13040. [Google Scholar] [CrossRef] [Green Version]
- RC Team. R: A Language and Environment for Statistical Computing; Vienna, Austria. 2014. Available online: https://www.R-project.org/ (accessed on 11 December 2019).
- Dowle, M.; Srinivasan, A. Data. Table: Extension of ‘Data.Frame’. 2019. Available online: https://CRAN.R-project.org/package=data.table (accessed on 9 December 12).
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Zeileis, A.; Grothendieck, G. Zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 2005, 14, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-331-924-277-4. [Google Scholar]
- Cheng, J.; Karambelkar, B.; Xie, Y. Leaflet: Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library. 2018. Available online: https://CRAN.R-project.org/package=leaflet (accessed on 16 November 2019).
- Appelhans, T.; Detsch, F.; Reudenbach, C.; Woellauer, S. Mapview: Interactive Viewing of Spatial Data in R. 2019. Available online: https://CRAN.R-project.org/package=mapview (accessed on 13 May 2019).
- Auguie, B. Gridextra: Miscellaneous Functions for “Grid” Graphics. 2017. Available online: https://CRAN.R-project.org/package=gridExtra (accessed on 9 September 2017).
- Heymann, J.; Reuter, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J.P.; Massart, S.; Kaiser, J.W.; Crisp, D. CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophys. Res. Lett. 2017, 44, 1537–1544. [Google Scholar] [CrossRef]
- Liu, J.; Bowman, K.W.; Schimel, D.S.; Parazoo, N.C.; Jiang, Z.; Lee, M.; Bloom, A.A.; Wunch, D.; Frankenberg, C.; Sun, Y.; et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 2017, 358. [Google Scholar] [CrossRef] [Green Version]
- Peters, G.P.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Ilyina, T.; Jackson, R.B.; Joos, F.; Korsbakken, J.I.; McKinley, G.A.; et al. Towards real-time verification of CO2 emissions. Nat. Clim. Chang. 2017, 7, 848. [Google Scholar] [CrossRef] [Green Version]
Measurement Data Set | Time Period | Spatial Resolution (Lon × Lat) | Temporal Resolution | Instrument | Merged Data Set Used in the Study |
---|---|---|---|---|---|
CO2_INSITU_ZSF | 2002–2018 | − | half-hourly | GC-FID | CO2_INSITU_ZSF; CO2_INSITU_ZSF_ADVS |
XCO2_TCCON_Garmisch | 2008–2018 | − | daily | Bruker IFS125HR | XCO2_TCCON_Garmisch |
XCO2_TCCON_Zugspitze | 2015–2018 | − | daily | Bruker IFS125HR | XCO2_TCCON_Zugspitze |
XCO2_SAT_Obs4MIPs | 2003–2016 | 5° × 5° | monthly | SCIAMACHY/TANSO-FTS | XCO2_SAT_merge |
XCO2_SAT_OCO-2 | 2017–2018 | 5° × 5° | monthly | OCO-2 | |
(X)CO2_CT2017 | 2002–2016 | 3° × 2° | 3-hourly | - | CO2_CT_merge_L6-10; XCO2_CT_merge_L1-25 |
(X)CO2_CT-NRT.v2018-1 | 2017–2018 | 3° × 2° | 3-hourly | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Sussmann, R.; Rettinger, M.; Ries, L.; Petermeier, H.; Menzel, A. Comparison of Continuous In-Situ CO2 Measurements with Co-Located Column-Averaged XCO2 TCCON/Satellite Observations and CarbonTracker Model Over the Zugspitze Region. Remote Sens. 2019, 11, 2981. https://doi.org/10.3390/rs11242981
Yuan Y, Sussmann R, Rettinger M, Ries L, Petermeier H, Menzel A. Comparison of Continuous In-Situ CO2 Measurements with Co-Located Column-Averaged XCO2 TCCON/Satellite Observations and CarbonTracker Model Over the Zugspitze Region. Remote Sensing. 2019; 11(24):2981. https://doi.org/10.3390/rs11242981
Chicago/Turabian StyleYuan, Ye, Ralf Sussmann, Markus Rettinger, Ludwig Ries, Hannes Petermeier, and Annette Menzel. 2019. "Comparison of Continuous In-Situ CO2 Measurements with Co-Located Column-Averaged XCO2 TCCON/Satellite Observations and CarbonTracker Model Over the Zugspitze Region" Remote Sensing 11, no. 24: 2981. https://doi.org/10.3390/rs11242981
APA StyleYuan, Y., Sussmann, R., Rettinger, M., Ries, L., Petermeier, H., & Menzel, A. (2019). Comparison of Continuous In-Situ CO2 Measurements with Co-Located Column-Averaged XCO2 TCCON/Satellite Observations and CarbonTracker Model Over the Zugspitze Region. Remote Sensing, 11(24), 2981. https://doi.org/10.3390/rs11242981