Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy)
"> Figure 1
<p>Study area showing the extent of the four DEMs derived from UAV surveys.</p> "> Figure 2
<p>FLO-2D model set up. (<b>a</b>) Computational domain with FLO-2D model input sections (in green): sections extrapolated from LiDAR (in black) and sections extrapolated from LiDAR or UAV models as described in the text (in red). The blue flag shows the location of input hydrographs, while red flags show locations of output hydrographs. The yellow and blue polygons represent the Manning value of 0.036 and 0.029 used in the models. Numbers indicate the location of the cross-section profiles in Figure 7. The hill-shaded background is from the LiDAR DTM. (<b>b</b>) Ortomosaic zoom-in of a river segment, and location of the FLO-2D input sections (in red). (<b>c</b>) Hill-shaded zoom of the UAV DSM with the location of the FLO-2D input sections (in red).</p> "> Figure 3
<p>Spatial distribution of the GCPs used for the model construction (see <a href="#remotesensing-11-01630-t002" class="html-table">Table 2</a> and <a href="#remotesensing-11-01630-t003" class="html-table">Table 3</a>). Color coding refers to all the models and shows the vertical differences between DEM and GCP elevation. (<b>a</b>) Model 1; (<b>b</b>) model 4, inset shows an example of the targets captured in the images; (<b>c</b>) model 2; and (<b>d</b>) model 3.</p> "> Figure 4
<p>Model 1 error evaluation. (<b>a</b>) Area distribution of the GPS points used for georeferencing and/or error evaluation. GCPs refer to markers used in the Photoscan model construction (see <a href="#remotesensing-11-01630-t002" class="html-table">Table 2</a> and <a href="#remotesensing-11-01630-t003" class="html-table">Table 3</a>). Check points refer to the independent set of points to check DEM accuracy. (<b>b</b>) Control points RMSE (blue dots) and check points RMSE (red dots) of Photoscan models were built as a function of the number of control points used. The green strip shows the value range of the number of GCPs suggested by the Photoscan Tutorial for accurate model georeferencing. See the text for details.</p> "> Figure 5
<p>Difference between SfM DSM and LiDAR DSM inside the channel. a) Studied area; b and c) magnified areas corresponding to the black boxes in frame a.</p> "> Figure 6
<p>DEM analysis of relevant hydraulic features. (<b>a</b>,<b>b</b>) Hillshaded maps of the 1-m LiDAR DTM and SfM DSM, respectively. (<b>c</b>) Difference between SfM DSM and LiDAR DSM. (<b>d</b>) Longitudinal profiles along the embankment walls (yellow lines in frames a and b). (<b>e</b>) Profiles of the river cross section (black lines in frame a and b). Flow rate values show the maximum flow rate for the different DEMs according to FLO-2D simulations.</p> "> Figure 7
<p>Comparison of the cross-section profiles derived from different topographic data. See <a href="#remotesensing-11-01630-f002" class="html-fig">Figure 2</a> for the locations of the cross-sections along the channel. (<b>a</b>) Profiles derived from SfM DSM, LiDAR DSM and DTM. (<b>b</b>) Profiles derived from SfM DSM and Simplified Sections.</p> "> Figure 8
<p>Flow rates computed using FLO-2D at four different sections (see <a href="#remotesensing-11-01630-f002" class="html-fig">Figure 2</a>) for an input flow step function with 50 m<sup>3</sup>/s increments (maximum input rate 600 m<sup>3</sup>/s) in the simulations based on LiDAR DTM, LiDAR DSM, and SfM DSM. The shaded area highlights the flow rate range without flooding.</p> "> Figure 9
<p>Flow rates computed using FLO-2D at four different points (see <a href="#remotesensing-11-01630-f002" class="html-fig">Figure 2</a>) for an input flow step function with 50 m<sup>3</sup>/s increments (maximum input rate 600 m<sup>3</sup>/s) in the simulations based on simplified sections extracted from the SfM DSM, SfM DSM+, and LiDAR DTM with bank walls updated using the SfM DSM. The shaded area highlights the flow rate range without flooding.</p> "> Figure 10
<p>The relation between flow rates and flow height for different topographic data: (<b>a</b>) position of the section, (<b>b</b>) section profiles, and (<b>c</b>) flow height vs. flow rates plot where dots are calculated using FLO-2D and dashed lines are the rating curves calculated using the Manning Formula (Equation (1)).</p> "> Figure 11
<p>Effect of topography resolution on the maximum flow rate for three selected sections. (<b>a</b>) Hill-shaded map of a reach of the Versilia River with the location of the sections. (<b>b</b>) Plots of topographic profiles, maximum flow rate vs. maximum flow height, as function of the topography resolution and maximum flow rate vs. cell size.</p> ">
Abstract
:1. Introduction
2. Study Site
3. DEMs
3.1. LiDAR DEM
3.2. DEM from the Structure from Motion Photogrammetry Method
4. Flooding Model
5. Results
5.1. DEMs from Structure from Motion
5.1.1. Error Analysis of Photoscan Model 1
5.1.2. Error Analysis of Model 1 DEM
5.1.3. Error Analysis of Merged DEMs
5.2. Topographic Data and Flow Modeling
5.2.1. Morphological River Channel Changes
5.2.2. Hydraulic Features and Grid Resolution
5.2.3. Hydraulic Model Comparison
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, P.; Hartnett, J.J. Exploring the causes of an extreme flood event in Central New York, NY, USA. Phys. Geogr. 2016, 37, 38–55. [Google Scholar] [CrossRef]
- Jena, P.P.; Chatterjee, C.; Pradhan, G.; Mishra, A. Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? J. Hydrol. 2014, 517, 847–862. [Google Scholar] [CrossRef]
- He, H.; Zhou, J.; Yu, Q.; Tian, Y.; Chen, B. Flood frequency and routing processes at a confluence of the middle Yellow River in China. River Res. Appl. 2007, 23, 407–427. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Arcangeletti, E.; Nardi, F. Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling. J. Hydrol. 2013, 487, 39–47. [Google Scholar] [CrossRef]
- Arduino, G.; Reggiani, P.; Todini, E. Recent advances in flood forecasting and flood risk assessment. Hydrol. Earth Syst. Sci. 2005, 9, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Bodoque, J.; Guardiola-Albert, C.; Aroca, E.; Galán, M.; Lorena Martínez-Chenoll, M. Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models. Remote Sens. 2016, 8, 604. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. Comparing Various Methods of Building Representation for 2D Flood Modelling In Built-Up Areas. Water Resour. Manag. 2015, 29, 379–397. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J. Hydrol. 2009, 377, 131–142. [Google Scholar] [CrossRef]
- Meesuk, V.; Vojinovic, Z.; Mynett, A.E.; Abdullah, A.F. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations. Adv. Water Resour. 2015, 75, 105–117. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Smith, M.; Carrivick, J.; Hooke, J.; Kirkby, M. Reconstructing flash flood magnitudes using ‘Structure-from-Motion’: A rapid assessment tool. J. Hydrol. 2014, 519, 1914–1927. [Google Scholar] [CrossRef]
- Leitão, J.P.; de Sousa, L.M. Towards the optimal fusion of high-resolution Digital Elevation Models for detailed urban flood assessment. J. Hydrol. 2018, 561, 651–661. [Google Scholar] [CrossRef]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-Dimensional Water Flood and Mudflow Simulation. J. Hydraul. Eng. J. Hydraul. 1993, 119, 244–261. [Google Scholar] [CrossRef]
- Rapetti, C.; Rapetti, F. L’evento pluviometrico eccezionale del 19 giugno 1996 in Alta Versilia (Toscana) nel quadro delle precipitazioni delle Alpi Apuane. Atti Soc. Sci. Nat. Mem. Ser. A 1996, 103, 143–159. [Google Scholar]
- Rapetti, F.; Vittorini, S. Le precipitazioni in Toscana: Osservazioni sui casi estremi. Rivista Geografica Italiana 1994, 101, 47–76. [Google Scholar]
- Giannecchini, R.; D’Amato Avanzi, G. Historical research as a tool in estimating hydrogeological hazard in a typical small alpine-like area: The example of the Versilia River basin (Apuan Alps, Italy). Phys. Chem. EarthParts A/B/C 2012, 49, 32–43. [Google Scholar] [CrossRef]
- D’Amato Avanzi, G.; Giannecchini, R. Eventi alluvionali e fenomeni franosi nelle Alpi Apuane (Toscana): Primi risultati di un’indagine retrospettiva nel bacino del Fiume Versilia. Rivista Geografica Italiana 2003, 110, 527–559. [Google Scholar]
- D’Amato Avanzi, G.; Giannecchini, R.; Puccinelli, A. The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: The June 19, 1996 event in northwestern Tuscany (Italy). Eng. Geol. 2004, 73, 215–228. [Google Scholar]
- MATTM. Ministero Dell’ambiente e Della Tutela del Territorio e del Mare; MATTM: Roma, Italy, 2018.
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Isola, I.; Tarquini, S.; Nannipieri, L. Multiview 3D reconstruction in geosciences. Comput. Geosci. 2012, 44, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Nannipieri, L.; Fornaciai, A.; Favalli, M.; Cipolla, V. Manuale delle operazioni con SAPR e analisi del rischio. In Rapporti Tecnici INGV; INGV: Rome, Italy, 2016. [Google Scholar]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- FLO-2D Software FLO-2D Reference Manual; FLO 2-D Software, Inc. P.O. Box 66: Nutrioso, AZ, USA, 2009.
- Autorità di Bacino del Fiume Po. Direttiva Contenente i Criteri per la Valutazione della Compatibilità Idraulica delle Infrastutture Pubbliche e di Interesse Pubblico All’interno delle Fasce “A” e “B”; Autorità di Bacino del Fiume Po.: Parma, Italy, 2006. [Google Scholar]
- United States Geological Survey. National Mapping Program Technical Instructions: Standards for Digital Elevation Models, U.S. Geological Survery National Mapping Division; United States Geological Survey: Reston, VA, USA. Available online: http://rmmcweb.cr.usgs.gov/public/nmpstds/demstds.html (accessed on 1 March 2019).
- Caredio, F.; D’Amato Avanzi, G.; Puccinelli, A.; Trivellini, M.; Venutelli, M.; Verani, M. La catastrofe idrogeologica del 19/06/1996 in Versilia e Garfagnana (Toscana, Italia): Aspetti geomorfologici e valutazioni idrauliche. In Proceedings of the La Prevenzione dalle Catastrofi Idrogeologiche: Il Contributo della Ricerca Scientifica, Alba, Italy, 5–7 November 1996; Volume 2, pp. 75–88. [Google Scholar]
- Preti, F.; Paris, E. Evento alluvionale del 19 giugno 1996 in Versilia-Garfagnana: Ricostruzione degli idrogrammi di piena. In Proceedings of the Convegno Scientifico in Occasione del Trentennale Dell’alluvione di Firenze: “La difesa dalle alluvioni”, Firenze, Italy, 4–5 November 1996. [Google Scholar]
- Vallet, J.; Panissod, F.; Strecha, C.; Tracol, M. Photogrammetric performance of an ultra light weight swinglet UAV. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII, 253–258. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Manning, R. On the flow of water in open channels and pipes, Transactions of the Institution of Civil Engineers of Ireland. Trans. Inst. Civ. Eng. Irel. 1891, 20, 161–207. [Google Scholar]
- Papaioannou, G.; Vasiliades, L.; Loukas, A.; Aronica, G.T. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling. Adv. Geosci. 2017, 44, 23–34. [Google Scholar] [CrossRef] [Green Version]
UAV Survey Parameters | ||||
---|---|---|---|---|
Model | Number of Photos | Flight Height (m) | Ground Resolution (cm) | Coverage Area (km2) |
1 | 590 | 51 | 1.44 | 0.14 |
2 | 646 | 50 | 1.41 | 0.13 |
3 | 710 | 45 | 1.29 | 0.11 |
4 | 705 | 63 | 1.79 | 0.21 |
GPS Control Point Errors | ||||||
---|---|---|---|---|---|---|
Model | Number of Control Points | X RMSE (m) | Y RMSE (m) | Z RMSE (m) | XY RMSE (m) | Total RMSE (m) |
1 | 59 | 0.022 | 0.021 | 0.028 | 0.030 | 0.041 |
2 | 45 | 0.015 | 0.020 | 0.022 | 0.025 | 0.033 |
3 | 48 | 0.021 | 0.022 | 0.022 | 0.030 | 0.038 |
4 | 16 | 0.033 | 0.037 | 0.025 | 0.050 | 0.056 |
Total area | 168 | 0.021 | 0.023 | 0.025 | 0.031 | 0.040 |
Statistics of RMSE of Source and Resampled UAV DEMs | ||||||
---|---|---|---|---|---|---|
Source DEMs | Resampled DEMs | |||||
Model | Position | Number of Points | Cell Size (cm) | RMSE (m) | Cell Size (cm) | RMSE (m) |
1 | Inside | 48 | 5.7 | 0.042 | 10 | 0.028 |
Bank/wall | 12 | 5.7 | 0.101 | 10 | 0.106 | |
Total | 60 | 5.7 | 0.059 | 10 | 0.054 | |
2 | Inside | 63 | 5.6 | 0.043 | 10 | 0.030 |
Bank/wall | 8 | 5.6 | 0.178 | 10 | 0.122 | |
Total | 71 | 5.6 | 0.072 | 10 | 0.050 | |
3 | Inside | 74 | 5.1 | 0.063 | 10 | 0.063 |
4 | Inside | 11 | 10 | 0.073 | 10 | 0.073 |
Bank/wall | 12 | 10 | 0.144 | 10 | 0.144 | |
Outside | 4 | 10 | 0.189 | 10 | 0.189 | |
Total | 27 | 10 | 0.129 | 10 | 0.129 | |
SfM DSM | Inside | 196 | 10 | 0.048 | ||
Bank/wall | 32 | 10 | 0.125 | |||
Total | 228 | 10 | 0.065 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luppichini, M.; Favalli, M.; Isola, I.; Nannipieri, L.; Giannecchini, R.; Bini, M. Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy). Remote Sens. 2019, 11, 1630. https://doi.org/10.3390/rs11131630
Luppichini M, Favalli M, Isola I, Nannipieri L, Giannecchini R, Bini M. Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy). Remote Sensing. 2019; 11(13):1630. https://doi.org/10.3390/rs11131630
Chicago/Turabian StyleLuppichini, Marco, Massimiliano Favalli, Ilaria Isola, Luca Nannipieri, Roberto Giannecchini, and Monica Bini. 2019. "Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy)" Remote Sensing 11, no. 13: 1630. https://doi.org/10.3390/rs11131630
APA StyleLuppichini, M., Favalli, M., Isola, I., Nannipieri, L., Giannecchini, R., & Bini, M. (2019). Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy). Remote Sensing, 11(13), 1630. https://doi.org/10.3390/rs11131630