New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)
"> Figure 1
<p>Relative Spectral Response of four Sensors for six analogous spectral bands.</p> "> Figure 2
<p>3% Stable Optimal Regions (white masks) and Rectangular region of interests (ROIs) (blue rectangle) within SDSU IPLAB PICS (Niger 1, Niger 2, Libya 1, Libya 4, Egypt 1 and Sudan 1).</p> "> Figure 3
<p>Histogram of ETM+ BRDF-corrected Mean TOA Reflectance of Libya 4; (<b>a</b>) Blue band; (<b>b</b>) SWIR2 band.</p> "> Figure 4
<p>Temporal trend of BRDF-corrected TOA Reflectance over Libya 4 Site [L7 ETM+, Terra MODIS, L8 OLI and S2A MSI]. Blue (<b>a</b>), Green (<b>b</b>), Red (<b>c</b>), NIR (<b>d</b>), SWIR 1 (<b>e</b>) and SWIR 2 (<b>f</b>) spectral bands. Note that in this figure the scaling adjustment factor has not been applied yet.</p> "> Figure 4 Cont.
<p>Temporal trend of BRDF-corrected TOA Reflectance over Libya 4 Site [L7 ETM+, Terra MODIS, L8 OLI and S2A MSI]. Blue (<b>a</b>), Green (<b>b</b>), Red (<b>c</b>), NIR (<b>d</b>), SWIR 1 (<b>e</b>) and SWIR 2 (<b>f</b>) spectral bands. Note that in this figure the scaling adjustment factor has not been applied yet.</p> "> Figure 5
<p>Temporal trend of BRDF-corrected Scaling Adjusted TOA reflectance over Libya 4 site (L7 ETM+, Terra MODIS, L8-OLI, S2A-MSI) in (<b>a</b>) blue band; (<b>b</b>) Green band; (<b>c</b>) Red band; (<b>d</b>) NIR band; (<b>e</b>) SWIR 1 band; (<b>f</b>) SWIR 2 band.</p> "> Figure 5 Cont.
<p>Temporal trend of BRDF-corrected Scaling Adjusted TOA reflectance over Libya 4 site (L7 ETM+, Terra MODIS, L8-OLI, S2A-MSI) in (<b>a</b>) blue band; (<b>b</b>) Green band; (<b>c</b>) Red band; (<b>d</b>) NIR band; (<b>e</b>) SWIR 1 band; (<b>f</b>) SWIR 2 band.</p> "> Figure 6
<p>Virtual constellation – homogenized 4 sensor’s TOA reflectance trends for the 6 spectrally matched bands over Libya 4 site.</p> "> Figure 7
<p>Homogenized TOA reflectance trends of Egypt 1 (<b>a</b>), Sudan 1 (<b>b</b>), Niger 1(<b>c</b>), Niger 2 (<b>d</b>) and Libya 1(<b>e</b>) PICS.</p> ">
Abstract
:1. Introduction
2. Satellite Sensor Overview: Landsat-8 OLI, Landsat-7 ETM+, Sentinel-2A MSI and Terra MODIS
3. Study Area (PICS Sites)
4. Methodology
4.1. Image Pre-Processing
4.2. Conversion to TOA Reflectance
4.3. Data Filtering
4.4. Bidirectional Reflectance Distribution Function (BRDF) Correction
4.5. Scaling Adjustment
4.6. Linearity Check for Individual Sites
4.7. Normality Check for Individual Sites
4.8. Statistical Tests for Trend Analysis
4.8.1. Mann-Kendall Trend Test
4.8.2. Chi-Square Test
5. Results and Discussion
5.1. Individual Sensor Trend Analysis
5.1.1. Libya 4 PICS Stability Analysis
5.1.2. Virtual Constellation Trend Analysis
5.1.3. Egypt 1, Sudan 1, Niger 1, Niger 2 and Libya 1 Stability Analysis
5.2. Chi-Square Test Result (Goodness of Fit Test)
- At Libya 4, the estimated AIC values assuming no trend (Without Slope Fit) are less than the values assuming a trend (With Slope Fit) in all bands. This result indicates that Libya 4 TOA reflectance does not appear to exhibit a trend in any band within the estimated uncertainty. Similar AIC behavior was observed at Egypt 1, resulting in a similar conclusion.
- At Libya 1, the estimated AIC values assuming a trend (With Slope Fit) are less than the corresponding AIC values assuming no trend (Without Slope Fit) in the NIR band. This suggests the presence of a trend in that band’s TOA reflectance data within the estimated uncertainty. The estimated no-trend AIC values are less in the other bands, that is, no significant trend was detected.
- At Sudan 1, the estimated AIC values assuming trends (With Slope Fit) for all bands except SWIR 2 are less than the corresponding AIC values assuming no trend (Without Slope Fit). Within the estimated uncertainty, these results suggest the existence of trends in all bands except SWIR 2.
- At Niger 1, the estimated AIC values assuming trends (With Slope Fit) for the Green and Red bands are less than the corresponding AIC values assuming no trend (Without Slope Fit). This suggests the presence of trends in those band’s TOA reflectance data within the estimated uncertainty. The estimated no-trend AIC values are less in the other spectral bands, suggesting no significant trend was detected.
- At Niger 2, the estimated AIC value assuming a trend (With Slope Fit) for the Blue band is less than the corresponding AIC value assuming no trend (Without Slope Fit). This suggests the presence of a trend only in this band’s TOA reflectance data within the estimated uncertainty.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875. [Google Scholar] [CrossRef]
- Thome, K.J.; Arai, K.; Tsuchida, S.; Biggar, S.F. Vicarious calibration of ASTER via the reflectance-based approach. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3285–3295. [Google Scholar] [CrossRef]
- Chander, G.; Angal, A.; Choi, T.; Xiong, X. Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous desert observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 386–399. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Chander, G.; Christopherson, J.; Stensaas, G.; Teillet, P. Online catalog of world-wide test sites for the post-launch characterization and calibration of optical sensors. In Proceedings of the 58th International Astronautical Congress 2007, Hyderabad, India, 24–28 September 2007. [Google Scholar]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors. J. Appl. Remote Sens. 2010, 4, 043525. [Google Scholar]
- Yamamoto, H.; Kamei, A.; Nakamura, R.; Tsuchida, S. Long-term cross-calibration of the Terra ASTER and MODIS over the CEOS calibration sites. In Proceedings of the Earth Observing Systems XVI, San Diego, CA, USA, 13 September 2011. [Google Scholar]
- Govaerts, Y.M.; Clerici, M. Evaluation of radiative transfer simulations over bright desert calibration sites. IEEE Trans. Geosci. Remote Sens. 2004, 42, 176–187. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Clerici, M.; Clerbaux, N. Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1900–1914. [Google Scholar] [CrossRef]
- Teillet, P.; Barsi, J.; Chander, G.; Thome, K. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Proceedings of the Earth Observing Systems XII, San Diego, CA, USA, 5 October 2007. [Google Scholar]
- Chander, G.; Angal, A.; Xiong, X.J.; Helder, D.L.; Mishra, N.; Choi, T.J.; Wu, A. Preliminary assessment of several parameters to measure and compare usefulness of the CEOS reference pseudo-invariant calibration sites. In Proceedings of the Sensors, Systems and Next-Generation Satellites XIV, Toulouse, France, 20–23 September 2010. [Google Scholar]
- Morstad, D.L.; Helder, D.L. Use of pseudo-invariant sites for long-term sensor calibration. In Proceedings of the IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008. [Google Scholar]
- Chander, G.; Xiong, X.J.; Choi, T.J.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Virtual Constellations. Available online: http://ceos.org/ourwork/virtual-constellations/ (accessed on 1 January 2019).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Helder, D.; Markham, B.; Morfitt, R.; Storey, J.; Barsi, J.; Gascon, F.; Clerc, S.; LaFrance, B.; Masek, J.; Roy, D. Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sens. 2018, 10, 1340. [Google Scholar] [CrossRef]
- Micijevic, E.; Mishra, N.; Helder, D. Assessing Long Term Stability of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI. In Proceedings of the Conference on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, UT, USA, 21–24 August 2017. [Google Scholar]
- USGS. Landsat Missions. Available online: https://www.usgs.gov/land-resources/nli/landsat (accessed on 1 January 2019).
- Xiong, X.; Chiang, K.; Esposito, J.; Guenther, B.; Barnes, W. MODIS on-orbit calibration and characterization. Metrologia 2003, 40, S89. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Helder, D.; Kaewmanee, M.; Leigh, L. Assessing the calibration differences in the reflective solar bands of Terra MODIS and Landsat-7 enhanced thematic mapper plus. J. Appl. Remote Sens. 2018, 12, 044002. [Google Scholar] [CrossRef]
- Barsi, J.A.; Markham, B.L.; Czapla-Myers, J.S.; Helder, D.L.; Hook, S.J.; Schott, J.R.; Haque, M.O. Landsat-7 ETM+ radiometric calibration status. In Proceedings of the Earth Observing Systems XXI, San Diego, CA, USA, 19 September 2016. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Micijevic, E.; Haque, M.O.; Mishra, N. Radiometric calibration updates to the Landsat collection. In Proceedings of the Earth Observing Systems XXI, San Diego, CA, USA, 28 August–1 September 2016. [Google Scholar]
- Xiong, X.; Angal, A.; Barnes, W.L.; Chen, H.; Chiang, V.; Geng, X.; Li, Y.; Twedt, K.; Wang, Z.; Wilson, T. Updates of Moderate Resolution Imaging Spectroradiometer on-orbit calibration uncertainty assessments. J. Appl. Remote Sens. 2018, 12, 034001. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Barsi, J.A.; Alhammoud, B.; Czapla-Myers, J.; Gascon, F.; Haque, M.O.; Kaewmanee, M.; Leigh, L.; Markham, B.L. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. 2018, 51, 822–837. [Google Scholar] [CrossRef]
- ESA Sentinel Online. Available online: https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/performance (accessed on 1 January 2019).
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens. 2010, 36, 527–539. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.; Angal, A.; Choi, J.; Xiong, X. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sens. 2014, 6, 1327–1346. [Google Scholar] [CrossRef]
- Vuppula, H. Normalization of Pseudo-invariant Calibration Sites for Increasing the Temporal Resolution and Long-Term Trending. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2017. [Google Scholar]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, South Dakota, 2016; p. 106.
- USGS. Landsat 7 Science Data Users Handbook; USGS: Washington, DC, USA, 2011; p. 186.
- Neckel, H.; Labs, D. The solar radiation between 3300 and 12,500 Angstorms. Sol. Phys. 1984, 90, 205–258. [Google Scholar] [CrossRef]
- Smith, E.V.; Gottlieb, D.M. Solar flux and its variations. Space Sci. Rev. 1974, 16, 771–802. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Simon, P.; Mandel, H.; Gillotay, D. Observation of the solar spectral irradiance from 200 nm to 870 nm during the ATLAS 1 and ATLAS 2 missions by the SOLSPEC spectrometer. Metrologia 1998, 35, 689. [Google Scholar] [CrossRef]
- Strabala, K.I. MODIS Cloud Mask User’s Guide; University of Wisconsin-Madison: Madison, WI, USA, 2005. [Google Scholar]
- Farhad, M.M. Cross Calibration and Validation of Landsat 8 OLI and Sentinel 2A MSI. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2018. [Google Scholar]
- Mendes, M.; Pala, A. Type I error rate and power of three normality tests. Pak. J. Inf. Technol. 2003, 2, 135–139. [Google Scholar]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Mishra, N.; Helder, D.L. Impact of Terra MODIS Collection 6 on long-term trending comparisons with Landsat 7 ETM+ reflective solar bands. Remote Sens. Lett. 2013, 4, 873–881. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef]
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Statistical Analysis for Monotonic Trends; Tertra Tech Inc.: Fairfax, VA, USA, 2011. [Google Scholar]
- Thas, O.; Van Vooren, L.; Ottoy, J. Selection of nonparametric methods for monotonic trend detection in water quality. J. Am. Water Res. Assoc. 2007, 34, 347–357. [Google Scholar] [CrossRef]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Boil. 2004, 53, 793–808. [Google Scholar] [CrossRef]
Characteristics | Landsat 8-OLI | Landsat 7-ETM+ | Sentinel 2A-MSI | Terra MODIS |
---|---|---|---|---|
Number of Bands | 11 | 8 | 13 | 36 |
Spatial Resolution | 30 m | 15 m, 30 m, 60 m | 10 m, 20 m, 60 m | 250 m, 500 m, 1000 m |
Swath Width | 185 km | 183 km | 295 km | 2330 km |
Spectral Coverage | 0.4–1.38 µm | 0.4–14 µm | 0.4–2.2 µm | 0.4–12.5 µm |
Pixel Quantization | 12 bits | 8 bits | 12 bits | 12 bits |
Launch Date | 11 February 2013 | 15 April 1999 | 23 June 2015 | 18 December 1999 |
Temporal Resolution | 16 days | 16 days | 5 days | 1–2 days |
Orbit Type | Sun-synchronous | Sun-synchronous | Sun-synchronous | Sun-synchronous |
Equatorial Crossing Time | 10:13 a.m. | 10:00 a.m. | 10:30 a.m. | 10:30 a.m. |
Altitude | 705 km | 705 km | 786 km | 705 km |
Bandwidth (nm) | ||||||
---|---|---|---|---|---|---|
Sensor | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 |
OLI | 452–512 (b2) | 533–590 (b3) | 636–673 (b4) | 851–879 (b5) | 1567–1651 (b6) | 2107–2294 (b7) |
ETM+ | 441–514 (b1) | 519–611 (b2) | 631–692 (b3) | 772–898 (b4) | 1547–1748 (b5) | 2064–2346 (b7) |
MSI | 470–524 (b2) | 504–602 (b3) | 649–680 (b4) | 855–875 (b-8a) | 1569–1658 (b11) | 2113–2286 (b12) |
MODIS | 459–479 (b3) | 545–564 (b4) | 620–670 (b1) | 841–876 (b2) | 1628–1652 (b6) | 2105–2155 (b7) |
PICS | WRS-2 Path/Row | Minimum Latitude | Minimum Longitude | Maximum Latitude | Maximum Longitude | Center Latitude | Center Longitude |
---|---|---|---|---|---|---|---|
Libya 4 | 181/40 | 28.38 | 23.09 | 28.81 | 23.86 | 28.55° N | 23.38° E |
Libya 1 | 187/43 | 24.55 | 13.32 | 24.86 | 13.66 | 24.70° N | 13.49° E |
Niger 1 | 189/46 | 20.28 | 9.19 | 20.53 | 9.52 | 9.36° N | 20.41° E |
Niger 2 | 188/45 | 21.25 | 10.38 | 21.47 | 10.71 | 10.44° N | 21.08° E |
Sudan1 | 177/45 | 21.40 | 27.81 | 21.75 | 27.59 | 21.40° N | 27.70° E |
Egypt1 | 179/41 | 26.91 | 26.31 | 27.13 | 26.62 | 27.41° N | 26.38° E |
L8-OLI | L7-ETM+ | S2A-MSI | Terra MODIS | |||||
---|---|---|---|---|---|---|---|---|
Bands | Pvalue | Correlation | Pvalue | Correlation | Pvalue | Correlation | Pvalue | Correlation |
Blue | 0.0046 | Yes | 0.035 | Yes | 0.509 | No | 0.128 | No |
Green | 0.0012 | Yes | 0.190 | No | 0.052 | No | 0.695 | No |
Red | 0.0252 | Yes | 0.005 | Yes | 0.014 | Yes | 0.194 | No |
NIR | 0.0004 | Yes | 0.003 | Yes | 0.192 | No | 0.342 | No |
SWIR1 | 0.0150 | Yes | 0.069 | No | 0.322 | No | 0.213 | No |
SWIR2 | 0.5118 | No | 0.009 | Yes | 0.111 | No | 0.656 | No |
Virtual Constellation (OLI, ETM+, MSI and MODIS) | ||
---|---|---|
Bands | P Value | Correlation |
Blue | 0.4848 | No |
Green | 0.4467 | No |
Red | 0.0104 | Yes |
NIR | 0.0130 | Yes |
SWIR 1 | 0.1949 | No |
SWIR 2 | 0.1595 | No |
Band | L8-OLI | L7-ETM+ | S2A-MSI | Terra MODIS | Combined Sensor |
---|---|---|---|---|---|
Blue | Normal | Non-normal | Normal | Non-normal | Non-normal |
Green | Normal | Non-normal | Normal | Non-normal | Non-normal |
Red | Normal | Non-normal | Normal | Normal | Normal |
NIR | Normal | Normal | Normal | Normal | Non-normal |
SWIR 1 | Normal | Normal | Non-normal | Non-normal | Non-normal |
SWIR 2 | Normal | Normal | Normal | Normal | Normal |
Band | Kendall Correlation Coefficient | S Statistic Value | P Value | Decision |
---|---|---|---|---|
Landsat -7 ETM+ | ||||
Blue | −0.066 | −71 | 0.2691 | No Trend |
Green | 0.086 | 93 | 0.1466 | No Trend |
Red | 0.151 | 163 | 0.0106 | Upward Trend |
NIR | 0.269 | 289 | 0.0000 | Upward Trend |
SWIR 1 | 0.278 | 299 | 0.0000 | Upward Trend |
SWIR 2 | 0.213 | 229 | 0.0003 | Upward Trend |
TERRA MODIS | ||||
Blue | 0.088 | 111 | 0.1211 | No Trend |
Green | 0.072 | 91 | 0.2046 | No Trend |
Red | 0.089 | 113 | 0.1146 | No Trend |
NIR | 0.076 | 97 | 0.1761 | No Trend |
SWIR 1 | −0.063 | −80 | 0.2656 | No Trend |
SWIR 2 | −0.004 | −5 | 0.9551 | No Trend |
Landsat-8 OLI | ||||
Blue | −0.254 | −15 | 0.1319 | No Trend |
Green | −0.424 | −25 | 0.009 | Downward Trend |
Red | −0.373 | −22 | 0.023 | Downward Trend |
NIR | −0.39 | −23 | 0.0166 | Downward Trend |
SWIR 1 | −0.458 | −27 | 0.0051 | Downward Trend |
SWIR 2 | −0.085 | −5 | 0.6668 | No Trend |
Sentinel-2A MSI | ||||
Blue | 0.150 | 3 | 0.6721 | No Trend |
Green | 0.500 | 10 | 0.0624 | No Trend |
Red | 0.300 | 6 | 0.3006 | No Trend |
NIR | 0.300 | 6 | 0.3006 | No Trend |
SWIR 1 | 0.350 | 7 | 0.2042 | No Trend |
SWIR 2 | −0.200 | −4 | 0.5346 | No Trend |
Band | L7- ETM+ | Terra-MODIS | S2A-MSI |
---|---|---|---|
Blue | 1.015 | 0.980 | 1.021 |
Green | 1.010 | 1.027 | 1.005 |
Red | 1.004 | 1.028 | 0.994 |
NIR | 0.992 | 1.004 | 0.996 |
SWIR 1 | 1.004 | 0.994 | 0.995 |
SWIR 2 | 1.002 | 1.001 | 1.005 |
Sensor | L7- ETM+ | Terra-MODIS | S2A-MSI | |||
---|---|---|---|---|---|---|
Bands | Before | After | Before | After | Before | After |
Blue | −3.13 | −0.07 | −5.39 | −0.27 | 2.06 | 0.06 |
Green | −0.98 | 0.13 | −5.03 | 0.01 | −1.07 | 0.03 |
Red | 0.78 | 0.18 | −5.10 | −0.11 | 2.76 | 0.02 |
NIR | −8.62 | 0.35 | −2.38 | −0.06 | 0.45 | 0.02 |
SWIR 1 | −2.16 | 0.33 | 3.65 | 0.10 | 0.67 | 0.01 |
SWIR 2 | −5.86 | 0.40 | 8.34 | −0.16 | −0.35 | 0.04 |
Band | Kendall Correlation Coefficient | S Statistic Value | P-Value | Decision |
---|---|---|---|---|
Blue | 0.072 | 120 | 0.1507 | No Trend |
Green | 0.098 | 162 | 0.0979 | No Trend |
Red | 0.119 | 197 | 0.1408 | No Trend |
NIR | 0.131 | 217 | 0.0862 | No Trend |
SWIR 1 | –0.063 | −105 | 0.3717 | No Trend |
SWIR 2 | 0.077 | 127 | 0.2878 | No Trend |
Sites | Libya 4 | Egypt 1 | Niger 1 | Niger 2 | Sudan 1 | Libya 1 |
---|---|---|---|---|---|---|
Number of homogenized Scenes | 642 | 769 | 702 | 727 | 732 | 712 |
Band | Kendall Correlation Coefficient | S-Statistic Value | P-Value | Decision |
---|---|---|---|---|
Egypt 1 | ||||
Blue | 0.088 | 176 | 0.1285 | No Trend |
Green | 0.082 | 164 | 0.2659 | No Trend |
Red | 0.098 | 196 | 0.1880 | No Trend |
NIR | 0.144 | 287 | 0.0616 | No Trend |
SWIR 1 | 0.051 | 102 | 0.6014 | No Trend |
SWIR 2 | 0.161 | 321 | 0.0510 | No Trend |
Sudan 1 | ||||
Blue | –0.195 | –365 | 0.0500 | Downward Trend |
Green | –0.275 | –516 | 0.0040 | Downward Trend |
Red | –0.193 | –362 | 0.0178 | Downward Trend |
NIR | –0.175 | –328 | 0.0210 | Downward Trend |
SWIR 1 | –0.259 | –485 | 0.0033 | Downward Trend |
SWIR 2 | –0.006 | –11 | 0.9058 | No Trend |
Niger 2 | ||||
Blue | 0.207 | 377 | 0.0002 | Upward Trend |
Green | 0.055 | 100 | 0.2744 | No Trend |
Red | 0.079 | 145 | 0.1444 | No Trend |
NIR | 0.071 | 130 | 0.2498 | No Trend |
SWIR 1 | –0.090 | –164 | 0.3031 | No Trend |
SWIR 2 | 0.035 | 63 | 0.6517 | No Trend |
Niger 1 | ||||
Blue | 0.078 | 145 | 0.1286 | No Trend |
Green | –0.147 | –272 | 0.0191 | Downward Trend |
Red | –0.164 | –305 | 0.0080 | Downward Trend |
NIR | –0.120 | –222 | 0.0624 | No Trend |
SWIR 1 | –0.129 | –240 | 0.0533 | No Trend |
SWIR 2 | –0.038 | –70 | 0.6164 | No Trend |
Libya 1 | ||||
Blue | 0.047 | 78 | 0.3833 | No Trend |
Green | 0.031 | 51 | 0.5715 | No Trend |
Red | 0.078 | 129 | 0.1473 | No Trend |
NIR | 0.124 | 205 | 0.0209 | Upward Trend |
SWIR 1 | 0.023 | 38 | 0.6754 | No Trend |
SWIR 2 | 0.010 | 17 | 0.8563 | No Trend |
Bands | Libya 4 | Egypt 1 | Niger 1 | Niger 2 | Sudan 1 | Libya 1 |
---|---|---|---|---|---|---|
Blue | 1.26 | 1.78 | 2.64 | 2.86 | 2.13 | 2.83 |
Green | 0.98 | 1.58 | 1.86 | 2.19 | 1.78 | 2.08 |
Red | 0.89 | 1.45 | 1.50 | 1.76 | 1.61 | 1.50 |
NIR | 1.05 | 1.33 | 1.41 | 1.69 | 1.65 | 1.46 |
SWIR 1 | 1.01 | 1.24 | 1.37 | 1.41 | 1.47 | 1.42 |
SWIR 2 | 1.25 | 1.53 | 1.65 | 1.59 | 1.64 | 1.61 |
Source of Uncertainty | Uncertainty Range (%) | Remarks |
---|---|---|
Spatial CV of TOA reflectance | 0.57%–3.57% | For all common bands |
Sensor calibration uncertainty | 2%–5% | For all common bands |
BRDF calculation uncertainty | 0.65%–2.09% | Within 2.09% for VNIR bands; 1.89% for SWIR bands |
Scaling Adjustment uncertainty | 0.86%–3.22% | 0.91% to 3.22% for VNIR bands and 0.86% to 2.73% for SWIR bands |
Bands | Libya 1 | Libya 4 | Niger 1 | Niger 2 | Sudan 1 | Egypt 1 |
---|---|---|---|---|---|---|
Blue | 6.01% | 4.32% | 5.25% | 5.06% | 4.74% | 4.22% |
Green | 4.93% | 4.18% | 3.96% | 4.06% | 4.31% | 4.50% |
Red | 4.33% | 4.32% | 3.72% | 3.92% | 4.30% | 4.59% |
NIR | 4.45% | 4.52% | 3.72% | 4.00% | 4.37% | 4.51% |
SWIR 1 | 4.65% | 4.20% | 3.88% | 3.66% | 4.25% | 3.81% |
SWIR 2 | 5.42% | 5.35% | 5.19% | 4.61% | 5.07% | 4.79% |
Bands | Without Slope Fit | With Slope Fit | Bands | Without Slope Fit | With Slope Fit |
---|---|---|---|---|---|
Libya 4 | Egypt 1 | ||||
Blue | Lower AIC | Higher AIC | Blue | Lower AIC | Higher AIC |
Green | Lower AIC | Higher AIC | Green | Lower AIC | Higher AIC |
Red | Lower AIC | Higher AIC | Red | Lower AIC | Higher AIC |
NIR | Lower AIC | Higher AIC | NIR | Lower AIC | Higher AIC |
SWIR 1 | Lower AIC | Higher AIC | SWIR 1 | Lower AIC | Higher AIC |
SWIR 2 | Lower AIC | Higher AIC | SWIR 2 | Lower AIC | Higher AIC |
Libya 1 | Sudan 1 | ||||
Blue | Lower AIC | Higher AIC | Blue | Higher AIC | Lower AIC |
Green | Lower AIC | Higher AIC | Green | Higher AIC | Lower AIC |
Red | Lower AIC | Higher AIC | Red | Higher AIC | Lower AIC |
NIR | Higher AIC | Lower AIC | NIR | Higher AIC | Lower AIC |
SWIR 1 | Lower AIC | Higher AIC | SWIR 1 | Higher AIC | Lower AIC |
SWIR 2 | Lower AIC | Higher AIC | SWIR 2 | Lower AIC | Higher AIC |
Niger 1 | Niger 2 | ||||
Blue | Lower AIC | Higher AIC | Blue | Higher AIC | Lower AIC |
Green | Higher AIC | Lower AIC | Green | Lower AIC | Higher AIC |
Red | Higher AIC | Lower AIC | Red | Lower AIC | Higher AIC |
NIR | Lower AIC | Higher AIC | NIR | Lower AIC | Higher AIC |
SWIR 1 | Lower AIC | Higher AIC | SWIR 1 | Lower AIC | Higher AIC |
SWIR 2 | Lower AIC | Higher AIC | SWIR 2 | Lower AIC | Higher AIC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuli, F.T.Z.; Pinto, C.T.; Angal, A.; Xiong, X.; Helder, D. New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS). Remote Sens. 2019, 11, 1502. https://doi.org/10.3390/rs11121502
Tuli FTZ, Pinto CT, Angal A, Xiong X, Helder D. New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS). Remote Sensing. 2019; 11(12):1502. https://doi.org/10.3390/rs11121502
Chicago/Turabian StyleTuli, Fatima Tuz Zafrin, Cibele Teixeira Pinto, Amit Angal, Xiaoxiong Xiong, and Dennis Helder. 2019. "New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)" Remote Sensing 11, no. 12: 1502. https://doi.org/10.3390/rs11121502
APA StyleTuli, F. T. Z., Pinto, C. T., Angal, A., Xiong, X., & Helder, D. (2019). New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS). Remote Sensing, 11(12), 1502. https://doi.org/10.3390/rs11121502