Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations
"> Figure 1
<p>Spatial distribution of the gross errors with regard to the residual accelerations (unit: m/s<sup>2</sup>).</p> "> Figure 2
<p>PSDs of the residual accelerations derived by the four different methods. (<b>Top-left</b>) Along-track; (<b>Top-right</b>) Cross-track; (<b>Bottom</b>) Radial (unit: m/s<sup>2</sup>/Hz<sup>1</sup><sup>/2</sup>).</p> "> Figure 3
<p>Spherical harmonics triangle of the estimated geopotential coefficients when compared with EIGEN-6C4.</p> "> Figure 4
<p>Degree-Error Root Mean Square(DE-RMS) of the recovered spherical harmonic coefficients w.r.t. EIGEN-6C4.</p> "> Figure 5
<p>Geoid height errors of the recovered spherical harmonic coefficients w.r.t. EIGEN-6C4 with the 500 km Gaussian smoothing applied.</p> "> Figure 6
<p>DE-RMS of the recovered spherical harmonic coefficients w.r.t. DGM-1S.</p> "> Figure 7
<p>Geoid height errors of the recovered spherical harmonic coefficients w.r.t. DGM-1S with the 500 km Gaussian smoothing applied.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Functional Models for the Determination of the Satellite Acceleration
2.1.1. Numerical Differentiation Method
2.1.2. Carrier Phase Differentiation Method
2.1.3. Orbit Differentiation Method
2.2. Point-Wise Acceleration Approach for Recovering Gravity Field Model
3. Results
3.1. Experimental Data and its Preprocessing
3.2. Accuracy Analysis of Residual Accelerations
3.3. Gravity Field Solutions
3.3.1. Solutions estimated from 71 days of observations
3.3.2. Solutions estimated from 2.5 years of observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Floberghagen, R.; Fehringer, M.; Lamarre, D.; Muzi, D.; Frommknecht, B.; Steiger, C.; Pineiro, J.; da Costa, A. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J. Geod. 2011, 85, 749–758. [Google Scholar] [CrossRef]
- Reigber, C.; Luhr, H.; Schwintzer, P. CHAMP mission status. Adv. Space Res. 2002, 30, 129–134. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science. 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, M.R.; Floberghagen, R.; Haagmans, R.; Muzi, D.; Popescu, A. GOCE: ESA’s first Earth Explorer Core mission. Space Sci. Rev. 2003, 108, 419–432. [Google Scholar] [CrossRef]
- Jekeli, C. The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 1999, 75, 85–101. [Google Scholar] [CrossRef]
- Reigber, C.; Balmino, G.; Schwintzer, P.; Biancale, R.; Bode, A.; Lemoine, J.M.; Konig, R.; Loyer, S.; Neumayer, H.; Marty, J.C.; et al. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett. 2002, 14, 1692. [Google Scholar] [CrossRef]
- Han, S.C. Efficient determination of global gravity field from satellite-to-satellite tracking mission. Celest. Mech. Dyn. Astron. 2004, 88, 69–102. [Google Scholar] [CrossRef]
- Baur, O.; Bock, H.; Höck, E.; Jäggi, A.; Krauss, S.; Mayer-Gürr, T.; Reubelt, T.; Siemes, C.; Zehentner, N. Comparison of GOCE-GPS gravity fields derived by different approaches. J. Geod. 2014, 88, 959–973. [Google Scholar] [CrossRef]
- Liu, X. Global Gravity Field Recovery from Satellite-to-Satellite Tracking Data with the Acceleration Approach. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Pail, R.; Bruinsma, S.; Migliaccio, F.; Förste, C.; Goiginger, H.; Schuh, W.-D.; Höck, E.; Reguzzoni, M.; Brockmann, J.M.; Abrikosov, O.; et al. First GOCE gravity field models derived by three different approaches. J. Geod 2011, 85, 819. [Google Scholar] [CrossRef]
- Beutler, G.; Jäggi, A.; Mervart, L.; Meyer, U. The celestial mechanics approach: theoretical foundations. J. Geod. 2010, 84, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, M.; Sideris, M.G.; Sneeuw, N. On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited. J. Geod. 2009, 83, 1131–1143. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Ilk, K.H.; Eicker, A.; Feuchtinger, M. ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J. Geod. 2005, 78, 462–480. [Google Scholar] [CrossRef]
- Reubelt, T.; Austen, G.; Grafarend, E.W. Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracking satellite. Case study: CHAMP. J. Geod. 2003, 77, 257–278. [Google Scholar] [CrossRef]
- Ditmar, P.; van der Sluijs, A.V.E. A technique for modeling the Earth’s gravity field on the basis of satellite accelerations. J. Geod. 2004, 78, 12–33. [Google Scholar] [CrossRef]
- Ditmar, P.; Kuznetsov, V.; Sluijs, A.; Schrama, E.; Klees, R. ’DEOS_CHAMP-01C_70’: A model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J. Geod. 2006, 79, 586–601. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Reubelt, T.; Tenzer, R. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics 2017, 8, 260–272. [Google Scholar] [CrossRef]
- Baur, O.; Reubelt, T.; Weigelt, M.; Roth, M.; Sneeuw, N. GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach. Adv. Space Res. 2012, 50, 385–396. [Google Scholar] [CrossRef]
- Bezděk, A.; Sebera, J.; Klokočník, J.; Kostelecký, J. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites. Adv. Space Res. 2014, 53, 412–429. [Google Scholar] [CrossRef]
- Bruton, A.M.; Glennie, C.L.; Schwarz, K.P. Differentiation for High-Precision GPS Velocity and Acceleration Determination. GPS Solut. 1999, 2, 7–21. [Google Scholar] [CrossRef]
- Salazar, D.; Hernandez-Pajares, M.; Juan-Zornoza, J.M.; Sanz-Subirana, J.; Aragon-Angel, A. EVA: GPS-based extended velocity and acceleration determination. J. Geod. 2011, 85, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Szarmes, M.; Ryan, S.J.; Lachapelle, G.; Fenton, P. DGPS High Accuracy Aircraft Velocity Determination Using Doppler Measurements. In Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, AB, Canada, 3–6 June 1997. [Google Scholar]
- Jekeli, C.; Garcia, R. GPS phase accelerations for moving-base vector gravimetry. J. Geod. 1997, 71, 630–639. [Google Scholar] [CrossRef]
- Kennedy, S. Acceleration estimate from GPS carrier phases for airborne gravimetry. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2002. [Google Scholar]
- Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H.H. Earth’s gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements. J. Geod. 2017, 91, 1049–1068. [Google Scholar] [CrossRef]
- Zehentner, N.; Mayer-Gürr, T.; Heuberger, F. Global Gravity Field Modelling from Orbit Data based on the Acceleration Approach; Scientific Report 5224; Institute of Theretical Geodesy and Satellite Geodesy, Graz University of Technology: Graz, Austria, 2012. [Google Scholar]
- Montenbruck, O.; Hackel, S.; Jäggi, A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J. Geod. 2018, 92, 711–726. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Rummel, R.; Balmoni, G.; Johannessen, J.; Visser, P.; Woodworth, P. Dedicated gravity field missions – priciples and aims. J. Geodyn. 2002, 33, 3–20. [Google Scholar] [CrossRef]
- Yi, W. An alternative computation of a gravity field model from GOCE. Adv Space Res. 2012, 50, 371–384. [Google Scholar] [CrossRef]
- Stanish, E.M. JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312. F-98-048. Available online: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf (accessed on 12 June 2019).
- Petit, G.; Luzum, B. IERS Conventions (2010). Bureau International des Poids et Mesures Sevres (France). 2010. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html (accessed on 1 April 2019).
- Savcenko, R.; Bosch, W. EOT11a – empirical ocean tide model from multi-mission satellite altimetry; Scientific Report 89; Deutsches Geodätisches Forschungsinstitut, Technische Universität München: München, Germany, 2012. [Google Scholar]
- Desai, S.D. Observing the pole tide with satellite altimetry. J. Geophys. Res. Oceans 2002, 107, 3186. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- EGG-C. GOCE Level1b Product Data Handbook. GOCE-GSEG-EOPG-TN-06-0137. 2008. Available online: https://earth.esa.int/c/document_library/get_file?folderId=14168&name=DLFE-772.pdf (accessed on 13 June 2019).
- EGG-C. GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110. 2010. Available online: https://earth.esa.int/documents/10174/1650485/GOCE_Product_Data_Handbook_Level-2 (accessed on 13 June 2019).
- Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M. Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod. 2009, 83, 659–678. [Google Scholar] [CrossRef]
- Bock, H.; Jäggi, A.; Beutler, G.; Meyer, U. GOCE: precise orbit determination for the entire mission. J. Geod. 2014, 88, 1047–1060. [Google Scholar] [CrossRef]
- Zehentner, N.; Mayer-Gurr, T. Precise orbit determination based on raw GPS measurements. J. Geod. 2016, 90, 275–286. [Google Scholar] [CrossRef]
- Farahani, H.; Ditmar, P.; Klees, R.; Liu, X.; Zhao, Q.; Guo, J. The static gravity field model DGM-1S from GRACE and GOCE data: computation, validation and an analysis of GOCE mission’s added value. J. Geodyn. 2013, 87, 843–867. [Google Scholar] [CrossRef]
- Förste, C.B.; Sean, L.; Abrikosov, O.; Lemoine, J.-M.; Marty, J.C.; Flechtner, F.; Balmino, G.; Barthelmes, F.; Biancale, R. EIGEN-6C4 The Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse. Available online: http://icgem.gfz-potsdam.de/getmodel/doc/7fd8fe44aa1518cd79ca84300aef4b41ddb2364aef9e82b7cdaabdb60a9053f1 (accessed on 1 April 2019).
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Soild Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Bock, H.; Jäggi, A.; Svehla, D.; Beutler, G.; Hugentobler, U.; Visser, P. Precise orbit determination for the GOCE satellite using GPS. Adv. Space Res. 2007, 39, 1638–1647. [Google Scholar] [CrossRef]
- van den IJssel, J.; Visser, P.; Doornbos, E.; Meyer, U.; Bock, H.; Jäggi, A. GOCE SSTI L2 Tracking Losses and their Impact on POD Performance. In Proceedings of the 4th International GOCE User Workshop, Munich, Germany, 31 March–1 April 2011. [Google Scholar]
- Bock, H.; Jäggi, A.; Meyer, U.; Visser, P.; van den IJssel, J.; van Helleputte, T.; Heinze, M.; Hugentobler, U. GPS-derived orbits for the GOCE satellite. J. Geod. 2011, 85, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Jäggi, A.; Bock, H.; Prange, L.; Meyer, U.; Beutler, G. GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv. Space Res. 2011, 47, 1020–1028. [Google Scholar] [CrossRef]
- Jäggi, A.; Bock, H.; Meyer, U.; Beulter, G.; van den IJssel, J. GOCE: assessment of GPS-only gravity field determination. J. Geod. 2015, 89, 33–48. [Google Scholar] [CrossRef]
- Sneeuw, N.; van Gelderen, M. The polar gap. In Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Lecture Notes in Earth Sciences; Sansò, F., Rummel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 65, pp. 559–568. [Google Scholar]
- Gelderen, M.; Koop, R. The use of degree variances in satellite gradiometry. J. Geod. 1997, 71, 337–343. [Google Scholar] [CrossRef]
Component | Min | Max | Mean | RMS |
---|---|---|---|---|
X | −3.968 × 10−5 | 3.809 × 10−5 | 4.522 × 10−10 | 3.039 × 10−7 |
Y | −1.612 × 10−5 | 1.563 × 10−5 | −1.649 × 10−10 | 1.105 × 10−7 |
Z | −1.457 × 10−5 | 1.313 × 10−5 | 1.978 × 10−10 | 1.204 × 10−7 |
Category | Description |
---|---|
Third-body perturbations | DE405 [31] |
Solid Earth tides | IERS Conventions 2010 [32] |
Ocean tides | EOT11a [33] |
Solid Earth pole tides | IERS Conventions 2010 |
Ocean pole tides | Desai [34] |
General relativistic effects | IERS Conventions 2010 |
Method | ||||
---|---|---|---|---|
Carrier Phase | ESA-Orbit | Graz-Orbit | SGG-Orbit | |
Data gap | 9.712‰ | 5.702‰ | 3.533‰ | 5.667‰ |
Gross error elimination | 9.529% | 12.257% | 11.963% | 10.679% |
Method | Component | Min | Max | Mean | RMS | 3D-RMS |
---|---|---|---|---|---|---|
Carrier phase | Along-track | −2.962 × 10−5 | 2.962 × 10−5 | 1.656 × 10−9 | 1.115 × 10−5 | 1.241 × 10−5 |
Cross-track | −2.508 × 10−5 | 2.508 × 10−5 | 3.775 × 10−10 | 8.104 × 10−6 | ||
Radial | −6.405 × 10−5 | 6.405 × 10−5 | 2.842 × 10−9 | 1.909 × 10−5 | ||
ESA-orbit | Along-track | −3.921 × 10−5 | 3.921 × 10−5 | −2.706 × 10−9 | 1.231 × 10−5 | 1.557 × 10−5 |
Cross-track | −3.699 × 10−5 | 3.699 × 10−5 | 7.520 × 10−10 | 9.675 × 10−6 | ||
Radial | −8.975 × 10−5 | 8.975 × 10−5 | 2.410 × 10−9 | 2.408 × 10−5 | ||
Graz-orbit | Along-track | −3.664 × 10−5 | 3.664 × 10−5 | 2.471 × 10−9 | 1.221 × 10−5 | 1.319 × 10−5 |
Cross-track | −3.634 × 10−5 | 3.634 × 10−5 | −3.226 × 10−9 | 1.211 × 10−6 | ||
Radial | −7.023 × 10−5 | 7.023 × 10−5 | 8.513 × 10−9 | 2.341 × 10−5 | ||
SGG-orbit | Along-track | −3.692 × 10−5 | 3.692 × 10−5 | 4.038 × 10−9 | 1.123 × 10−5 | 1.422 × 10−5 |
Cross-track | −3.669 × 10−5 | 3.669 × 10−5 | 4.498 × 10−9 | 1.223 × 10−5 | ||
Radial | −6.664 × 10−5 | 6.664 × 10−5 | 6.468 × 10−9 | 2.221 × 10−5 |
Degree | Carrier Phase Solution | ESA-Orbit Solution | Graz-Orbit Solution | SGG-Orbit Solution |
---|---|---|---|---|
10 | 0.09 | 0.08 | 0.07 | 0.08 |
30 | 0.67 | 0.65 | 0.48 | 0.71 |
50 | 2.28 | 1.88 | 1.51 | 2.54 |
70 | 5.50 | 4.43 | 4.70 | 6.32 |
90 | 11.71 | 10.34 | 13.97 | 14.09 |
110 | 21.98 | 21.30 | 26.68 | 26.28 |
130 | 37.02 | 39.19 | 46.72 | 46.96 |
Method | Min | Max | Mean | RMS |
---|---|---|---|---|
Carrier phase solution | −0.469 | 0.201 | 3.531 × 10−3 | 0.068 |
ESA-orbit solution | −0.360 | 0.331 | 1.001 × 10−2 | 0.060 |
Graz-orbit solution | −0.728 | 0.261 | 5.091 × 10−3 | 0.096 |
SGG-orbit solution | −0.365 | 0.187 | 1.251 × 10−3 | 0.063 |
Degree | Carrier Phase Solution | ESA-Orbit Solution | Graz-Orbit Solution |
---|---|---|---|
10 | 0.07 | 0.05 | 0.03 |
30 | 0.38 | 0.36 | 0.28 |
50 | 1.08 | 1.01 | 0.97 |
70 | 2.60 | 2.64 | 2.76 |
90 | 5.58 | 6.02 | 6.57 |
110 | 10.36 | 11.76 | 12.71 |
130 | 17.70 | 21.43 | 22.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Li, J.; Xu, X.; Wei, H.; Kuang, K.; Zhao, Y. Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations. Remote Sens. 2019, 11, 1420. https://doi.org/10.3390/rs11121420
Wu T, Li J, Xu X, Wei H, Kuang K, Zhao Y. Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations. Remote Sensing. 2019; 11(12):1420. https://doi.org/10.3390/rs11121420
Chicago/Turabian StyleWu, Tangting, Jiancheng Li, Xinyu Xu, Hui Wei, Kaifa Kuang, and Yongqi Zhao. 2019. "Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations" Remote Sensing 11, no. 12: 1420. https://doi.org/10.3390/rs11121420
APA StyleWu, T., Li, J., Xu, X., Wei, H., Kuang, K., & Zhao, Y. (2019). Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations. Remote Sensing, 11(12), 1420. https://doi.org/10.3390/rs11121420