Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images
"> Figure 1
<p>Pauli color-coded images and the corresponding optical images. (<b>a</b>)–(<b>b</b>) Gaofen-3 (GF-3) data. (<b>c</b>)–(<b>d</b>) uninhabited aerial vehicle SAR (UAVSAR) data.</p> "> Figure 2
<p>Decomposition results of the refined five component decomposition (R5CD). (<b>a</b>)–(<b>e</b>) Surface, double-bounce, volume, helix, and oblique orientation (OOB) scattering for GF-3 data, respectively. (<b>f</b>)–(<b>j</b>) Surface, double-bounce, volume, helix, and OOB scattering for UAVSAR data, respectively.</p> "> Figure 2 Cont.
<p>Decomposition results of the refined five component decomposition (R5CD). (<b>a</b>)–(<b>e</b>) Surface, double-bounce, volume, helix, and oblique orientation (OOB) scattering for GF-3 data, respectively. (<b>f</b>)–(<b>j</b>) Surface, double-bounce, volume, helix, and OOB scattering for UAVSAR data, respectively.</p> "> Figure 3
<p>Extraction results using the double-bounce and OOB scattering powers. (<b>a</b>)–(<b>c</b>) Extraction of buildings approximately aligned with the flight trajectory (AABs), OOBs, and built-up areas for GF-3 data, respectively. (<b>d</b>)–(<b>f</b>) Extraction of AABs, OOBs, and built-up areas for UAVSAR data, respectively.</p> "> Figure 4
<p>Magnitudes of proposed scattering feature and histograms of selected patches. (<b>a</b>)–(<b>b</b>) The magnitudes and histograms of <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>|</mo> <msub> <mi>ρ</mi> <mrow> <mi>HHVV</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </mrow> </semantics></math> for GF-3, respectively. (<b>c</b>)–(<b>d</b>) The magnitudes and histograms of <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>|</mo> <msub> <mi>ρ</mi> <mrow> <mi>HHVV</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </mrow> </semantics></math> for UAVSAR, respectively. (<b>e</b>)–(<b>f</b>) The magnitudes and histograms of <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi mathvariant="normal">U</mi> </msub> </mrow> </semantics></math> for GF-3, respectively. (<b>g</b>)–(<b>h</b>) The magnitudes and histograms of <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi mathvariant="normal">U</mi> </msub> </mrow> </semantics></math> for UAVSAR, respectively.</p> "> Figure 5
<p>Extraction results using the scattering feature. (<b>a</b>) GF-3 data. (<b>b</b>) UAVSAR data.</p> "> Figure 6
<p>Comparison of different building extraction methods for GF-3 data. (<b>a</b>) Azmedroub’s method, (<b>b</b>) Xiang’s method, (<b>c</b>) Quan’s method, (<b>d</b>) the proposed method, (<b>e</b>) ground truth.</p> "> Figure 7
<p>Comparison of different building extraction methods for UAVSAR data. (<b>a</b>) Azmedroub’s method, (<b>b</b>) Xiang’s method, (<b>c</b>) Quan’s method, (<b>d</b>) the proposed method, (<b>e</b>) ground truth.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Refined Model-based Building Extraction
2.2. Feature-driven Building Extraction
2.3. HX Markov Random Fields Image Fusion
3. Results
3.1. Data Description
3.2. Extraction Results Using Model-based Decomposition
3.3. Extraction Results Using Scattering Feature
3.4. Fusion Results and Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhai, W.; Shen, H.; Huang, C.; Pei, W. Buildings earthquake damage information extraction from a single post-earthquake PolSAR image. Remote Sens. 2016, 8, 171. [Google Scholar] [CrossRef]
- Xiang, D.; Tao, T.; Hu, C.; Fan, Q.; Yi, S. Built-up area extraction from PolSAR imagery with model-based decomposition and polarimetric coherence. Remote Sens. 2016, 8, 685. [Google Scholar] [CrossRef]
- Quan, S.; Xiong, B.; Xiang, D.; Zhao, L.; Zhang, S.; Kuang, G. Eigenvalue-based urban area extraction using polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 458–471. [Google Scholar] [CrossRef]
- Azmedroub, B.; Ouarzeddine, M.; Souissi, B. Extraction of urban areas from polarimetric SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2583–2591. [Google Scholar] [CrossRef]
- Susaki, J.; Kishimoto, M. Urban area extraction using X-band fully polarimetric SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 2592–2601. [Google Scholar] [CrossRef]
- Kajimoto, M.; Susaki, J. Urban-area extraction from polarimetric SAR images using polarization orientation angle. IEEE Geosci. Remote Sens. Lett. 2013, 10, 337–341. [Google Scholar] [CrossRef]
- Wu, W.; Guo, H.; Li, X. Man-made target detection in urban areas based on a new azimuth stationarity extraction method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1138–1146. [Google Scholar] [CrossRef]
- Wu, W.; Guo, H.; Li, X. Urban area SAR image man-made target extraction based on the product model and the time–frequency analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 8, 943–952. [Google Scholar] [CrossRef]
- Sato, M.; Chen, S.W.; Satake, M. Polarimetric SAR analysis of tsunami damage following the 11 March 2011 East Japan Earthquake. Proc. IEEE 2012, 100, 2861–2875. [Google Scholar] [CrossRef]
- Xiang, D.; Tao, T.; Ban, Y.; Yi, S. Man-made target detection from polarimetric SAR data via nonstationarity and asymmetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1459–1469. [Google Scholar] [CrossRef]
- Garg, A.; Singh, D. Development of an efficient contextual algorithm for discrimination of tall vegetation and urban for PALSAR data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3413–3420. [Google Scholar] [CrossRef]
- Ji, Y.; Sumantyo, J.T.S.; Ming, Y.C.; Waqar, M.M. Earthquake/tsunami damage level mapping of urban areas using full polarimetric sar data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2296–2309. [Google Scholar] [CrossRef]
- Biondi, F. Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-PolInSAR) for urban classification. In Proceedings of the EUSAR 2018, Aachen, Germany, 4–7 June 2018; pp. 309–313, ISBN 978-3-8007-4636-1. [Google Scholar]
- Biondi, F. Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-PolInSAR) for urban classification. Int. J. Remote Sens. 2019, 40, 3721–3750. [Google Scholar] [CrossRef]
- Salehi, M.; Sahebi, M.R.; Maghsoudi, Y. Improving the Accuracy of Urban Land Cover Classification Using Radarsat-2 PolSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1394–1401. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, X.S.; Li, Y.Z.; Sato, M. Adaptive model-based polarimetric decomposition using polinsar coherence. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1705–1718. [Google Scholar] [CrossRef]
- Quan, S.; Xiang, D.; Xiong, B.; Hu, C.; Kuang, G. A Hierarchical Extension of General Four-Component Scattering Power Decomposition. Remote Sens. 2017, 9, 856. [Google Scholar] [CrossRef]
- Atwood, D.K.; Thirion-Lefevre, L. Polarimetric phase and implications for urban classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1278–1289. [Google Scholar] [CrossRef]
- Xie, Q.; Ballester-Berman, D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. On the use of generalized volume scattering models for the improvement of general polarimetric model-based decomposition. Remote Sens. 2017, 9, 117. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Wu, G.; Chen, J.; Liang, S. The impacts of buildings orientation on polarimetric orientation angle estimation and model-based decomposition for multilook polarimetric SAR data in urban areas. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5520–5532. [Google Scholar] [CrossRef]
- An, W.; Xie, C.; Yuan, X.; Cui, Y.; Yang, J. Four-component decomposition of polarimetric SAR images with deorientation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1090–1094. [Google Scholar] [CrossRef]
- Chen, S.W.; Ohki, M.; Shimada, M.; Sato, M. Deorientation effect investigation for model-based decomposition over oriented built-up areas. IEEE Geosci. Remote Sens. Lett. 2013, 10, 273–277. [Google Scholar] [CrossRef]
- Lee, J.S.; Ainsworth, T.L. The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions. IEEE Trans. Geosci. Remote Sens. 2011, 49, 53–64. [Google Scholar] [CrossRef]
- Quan, S.; Xiong, B.; Xiang, D.; Hu, C.; Kuang, G. Scattering characterization of obliquely oriented buildingss from PolSAR data using eigenvalue-related model. Remote Sens. 2019, 11, 581. [Google Scholar] [CrossRef]
- Min, X.; Hao, C.; Varshney, P.K. An image fusion approach based on Markov random fields. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5116–5127. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Xiang, D.; Ban, Y.; Su, Y. Model-based decomposition with cross scattering for polarimetric SAR urban areas. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2496–2500. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; Taylor Francis: Boca Raton, FL, USA, 2009; pp. 85–158. ISBN 9781420054972. [Google Scholar]
- Quan, S.; Xiang, D.; Xiong, B.; Kuang, G. Derivation of the Orientation Parameters in Built-up Areas: With Application to Model-based Decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4714–4730. [Google Scholar] [CrossRef]
AABs | High | High | Low | High | Low |
OOBs | High | High | High | Low | Low |
Natural areas | Low | Low | High | Low | High |
Physical meaning | Reflection Asymmetry | Reflection Asymmetry | Volume Scattering Dominated | Double-bounce Scattering Dominated | Co-pol Correlation Coefficient |
Sensor | Identification Code | Flight | Orbit | Incidence Angle | Height | Observation |
---|---|---|---|---|---|---|
GF-3 | GF3_KRN_QPSI_005782_W122.4_N37.6_20170915 | Ascending | Sun-synchronous | 20°–50° | 775.0 km | Right-looking |
UAVSAR | Haywrd_14501_09091_004_091118_L090_CX_01 | —— | —— | 25°–65° | 12.5 km | Right-looking |
Patch A | Patch B | Patch C | Patch D | |
---|---|---|---|---|
Double-bounce Scattering | 0.1612 | 1.2198 | 0.0501 | 0.0096 |
OOB Scattering | 0.0814 | 0.0002 | 0.0001 | 0.0001 |
Patch A | Patch B | Patch C | Patch D | |
---|---|---|---|---|
Double-bounce Scattering | 0.1930 | 1.0593 | 0.0446 | 0.0098 |
OOB Scattering | 0.0936 | 0.0022 | 0.0092 | 0.0015 |
Method | Sensor | EP/PA (%) | ME (%) | FA (%) | CR (%) | UA (%) | OA (%) | Kappa |
---|---|---|---|---|---|---|---|---|
Azmedroub (2016) | GF-3 | 52.86 | 47.14 | 6.43 | 93.57 | 85.40 | 83.57 | 0.623 |
UAVSAR | 49.81 | 50.19 | 3.94 | 96.06 | 80.20 | 78.32 | 0.586 | |
Xiang (2017) | GF-3 | 46.32 | 53.68 | 5.58 | 94.42 | 81.35 | 80.57 | 0.596 |
UAVSAR | 50.54 | 49.46 | 3.53 | 96.47 | 82.65 | 79.54 | 0.615 | |
Quan (2018) | GF-3 | 67.64 | 32.36 | 6.32 | 93.68 | 88.73 | 87.58 | 0.674 |
UAVSAR | 65.64 | 34.36 | 3.66 | 96.34 | 87.58 | 86.42 | 0.657 | |
Proposed | GF-3 | 81.34 | 18.66 | 6.21 | 93.79 | 91.68 | 91.86 | 0.835 |
UAVSAR | 86.06 | 13.94 | 4.51 | 95.49 | 97.43 | 93.54 | 0.862 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Quan, S.; Dai, D.; Wang, X.; Xiao, S. Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images. Remote Sens. 2019, 11, 1379. https://doi.org/10.3390/rs11111379
Fan H, Quan S, Dai D, Wang X, Xiao S. Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images. Remote Sensing. 2019; 11(11):1379. https://doi.org/10.3390/rs11111379
Chicago/Turabian StyleFan, Hui, Sinong Quan, Dahai Dai, Xuesong Wang, and Shunping Xiao. 2019. "Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images" Remote Sensing 11, no. 11: 1379. https://doi.org/10.3390/rs11111379
APA StyleFan, H., Quan, S., Dai, D., Wang, X., & Xiao, S. (2019). Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images. Remote Sensing, 11(11), 1379. https://doi.org/10.3390/rs11111379