Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme
"> Figure 1
<p>São Paulo State and the map of the Tietê River Cascade System (TRCS) with land use and land cover (LULC) of the Tietê basin (reservoirs, forest, shrubland, bare soil and urban areas by ‘Coordenadoria de Planejamento Ambiental da Secretaria de Meio Ambiente’—CPLA, 2010). Four sampled reservoirs are magnified where sampling locations are indicated.</p> "> Figure 2
<p>Workflow developed in this study.</p> "> Figure 3
<p>Quasi-analytical algorithm (QAA) steps to provide a and b<sub>b</sub> from in situ R<sub>rs</sub> at λ<sub>0</sub> from version five (Lee et al., 2002) [<a href="#B29-remotesensing-11-02283" class="html-bibr">29</a>]. The a<sub>w</sub> (λ<sub>0</sub>) and b<sub>bw</sub> (λ<sub>0</sub>) was assumed from Pope and Fry (1997) [<a href="#B52-remotesensing-11-02283" class="html-bibr">52</a>] and Smith and Baker (1981) [<a href="#B53-remotesensing-11-02283" class="html-bibr">53</a>]. Highlights for (i) and (ii) steps. Equations are represented in <a href="#app1-remotesensing-11-02283" class="html-app">Table S1</a>.</p> "> Figure 4
<p>(<b>a</b>) Mean <math display="inline"><semantics> <mo>±</mo> </semantics></math> SD R<sub>rs</sub> spectra and (<b>b</b>) Mean <math display="inline"><semantics> <mo>±</mo> </semantics></math> SD total absorption spectra from all field surveys.</p> "> Figure 5
<p>IOPs derived from QAA<sub>Q—</sub>a(λ) with index 1 and b<sub>b</sub>(λ) with index 2. The frames represent the center wavelengths of OLI bands (<b>a</b>) 443, (<b>b</b>) 482, (<b>c</b>) 561 and (<b>d</b>) 655 nm.</p> "> Figure 6
<p>K<sub>d</sub> estimates via QAA<sub>TRCS</sub> for the entire cascade.</p> "> Figure 7
<p>Plots of K<sub>d_QAA</sub> against K<sub>d_r</sub> (in situ K<sub>d</sub>) over different reservoirs and fieldworks.</p> "> Figure 8
<p>OLI images to retrieve R<sub>rs</sub>, a<sub>t</sub>, b<sub>bp</sub> and SPM concentration in BB (10/13/14), BAR (08/15/2016) and NAV (05/02/2014) reservoirs in first, second and third line, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fieldsite and Dataset
2.2. Kd from IOPs
2.3. Kd Reference
2.4. SPM Modeling
2.5. Accuracy Assessment
3. Results
3.1. TRCS Characterization
3.2. QAA Performances
3.3. Kd Estimates
3.4. SPM Retrieval Using OLI/Landsat-8 Images
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Comparison of remote sensing data, model results and in situ data for total suspended matter TSM in the southern Frisian lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Valentini, E.; Gasperini, L.; Bolpagni, R.; Brando, V.E. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 2015, 157, 48–57. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Harvey, E.T.; Walve, J.; Andersson, A.; Karlson, B.; Kratzer, S. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management. Front. Mar. Sci. 2018, 5, 1–19. [Google Scholar] [CrossRef]
- Khan, M.F.; Maulud, K.N.A.; Latif, M.T.; Chung, J.X.; Amil, N.; Alias, A.; Nadzir, M.S.M.; Sahani, M.; Mohammad, M.; Jahaya, M.F.; et al. Physicochemical factors and their potential sources inferred from longterm rainfall measurements at an urban and a remote rural site in tropical areas. Sci. Total Environ. 2018, 613, 1401–1416. [Google Scholar] [CrossRef]
- Edward, T.K.; Glysson, G.D.; Guy, H.P.; Norman, V.W. Field Methods for Measurement of Fluvial Sediment. 2019. Available online: https://pubs.er.usgs.gov/publication/ofr86531 (accessed on 29 September 2018).
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 Remote Sensing Reflectance (Rrs) Products: Evaluations, Intercomparisons, and Enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Pahm, Q.V.; Ha, N.T.T.; Pahlevan, N.; Oanh, L.T.; Nguyen, T.B.; Nguyen, N.T. Using Landsat-8 images for quantifying suspended sediment concentration in Red River (Northern Vietnam). Remote Sens. 2018, 10, 1841. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically depth and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; He, X.; Pan, D.; Zhu, F.; Chen, T.; Wang, Y. Diurnal dynamics and seasonal variations of total suspended particulate matter in highly turbid Hangzhou Bay waters based on Geostationaty Ocean Color Imager. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2170–2180. [Google Scholar] [CrossRef]
- Lobo, F.L.; Costa, M.P.F.; Phillips, S.; Young, E.; McCregor, C. Light backscattering in turbid freshwater: A laboratory investigation. J. App. Remote Sens. 2014, 8, 083611–083625. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland waters and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Gernez, P.; Barillé, L.; Lerouxel, A.; Mazeran, C.; Lucas, A.; Doxaran, D. Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem. JGR Ocean. 2014, 119, 7277–7294. [Google Scholar] [CrossRef]
- Lou, Y.; Doxaran, D.; Ruddick, K.; Shen, F.; Gentili, B.; Yan, L.; Huamg, H. Saturation of water reflectance in extremely turbid media based on field measurements, satellite data and bio-optical modelling. Opt. Exp. 2018, 26, 10435–10452. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; Mchenry, J.R. Remote sensing of suspended sediments in surface waters. Photogramm. Eng. Remote Sens. 1976, 42, 1539–1545. [Google Scholar]
- Rodrigues, T.; Alcântara, E.; Watanabe, F.; Imai, N. Retrieval of Secchi disc depth from a reservoir using semi-analytical scheme. Remote Sens. Environ. 2017, 198, 213–228. [Google Scholar] [CrossRef]
- Bernardo, N.; Alcântara, E.; Watanabe, F.; Rodrigues, T.; Carmo, A.; Gomes, A.C.C.; Andradre, C. Light absorption budget in a reservoir cascade system with widely differing optical properties. Water 2019, 11, 229. [Google Scholar] [CrossRef]
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.S.Y.; Alcântara, E.; Rodrigues, T.W.P.; Imai, N.N.; Barbosa, C.C.F.; Rotta, L.H.S. Estimation of chlorophyll-a concentration and the trophic state of the Barra Bonita hydroelectric reservoir using OLI/Landsat-8 images. Int. J. Environ. Res. Public Health 2015, 12, 10391–10417. [Google Scholar] [CrossRef]
- Gomes, A.C.C.; Bernardo, N.; Carmo, A.C.C.; Rodrigues, T.; Alcântara, E. Diffuse attenuation coefficient retrieval in CDOM dominated inland water with high chlorophyll-a concentrations. Remote Sens. 2018, 10, 1063. [Google Scholar] [CrossRef]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcântara, E. Evaluation of the suitability of MODIS, OLCI and OLI for mapping the distribution of total suspended matter in the Barra Bonita Reservoir (Tietê River, Brazil). Remote Sens. Appl. Soc. Environ. 2016, 4, 68–82. [Google Scholar] [CrossRef]
- Ma, J.; Song, K.; Wen, Z.; Zhao, Y.; Shang, Y.; Fang, C.; Du, J. Spatial distribution of diffuse attenuation of photosynthetic active radiation and its main regulating factors in inland waters of Northeast China. Remote Sens. 2016, 8, 964. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light & Photosynthesis in Aquatic Ecosystems, 2nd ed.; Cambridge University Press: Melbourne, Australia, 1994. [Google Scholar]
- Martinez, J.-M.; Espinoza-Villar, R.; Armijos, E.; Moreira, L.S. The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter. J. Geophy. Res. Earth Surf. 2015, 120, 1274–1287. [Google Scholar] [CrossRef]
- Devlin, M.J.; Barry, J.; Mills, D.K.; Gowen, R.J.; Foden, J.; Sivyer, D.; Tett, P. Relationships between suspended particulate material, light attenuation and Secchi depth ini UK marine waters. Estuar. Coast. Shelf Sci. 2008, 79, 429–439. [Google Scholar] [CrossRef]
- Lee, Z.; Hu, C.; Shang, S.; Du, K.; Lewis, M.; Arnone, R.; Brewin, R. Penetration of UVvisible solar radiation in the global oceans: Insights from ocean color remote sensing. J. Geophys. Res. Ocean. 2013, 118, 4241–4255. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Mishra, D.; Alcântara, E.; Astuti, I.; Watanabe, F.; Imai, N. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic. Water 2018, 10, 449. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef] [Green Version]
- ANEEL. BIG–Banco de Informações de Geração (Information of Genetration Dataset). 2019. Available online: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm (accessed on 26 September 2019). (In Portuguese)
- Watanabe, F.S.Y.; Alcântara, E.A.; Imai, N.N.; Bernardo, N. Estimation of Chlorophyll-a Concentration from Optimizing a Semi-Analytical Algorithm in Productive Inland Waters. Remote Sens. 2018, 10, 227. [Google Scholar] [CrossRef]
- Cairo, C.T.; Barbosa, C.C.F.; Novo, E.M.L.M.; Calijuri, M.C. Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 2017, 784, 265–282. [Google Scholar] [CrossRef]
- Rodrigues, T.W.P.; Guimarães, U.S.; Rotta, L.H.D.S.; Watanabe, F.S.Y.; Alcântara, E.; Imai, N.N. Delineamento amostral em reservatórios utilizando imagens landsat-8/OLI: Um estudo de caso no reservatório de Nova Avanhandava (estado de São Paulo, Brasil). Bol. Ciências Geodésicas 2016, 22, 303–323. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA/AWWA/WEF: Washington, DC, USA, 1998; pp. 2–54. [Google Scholar]
- Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. Methods for Physical and Chemical Analysis of Freshwater; Blackwell Scientific Publications: Oxford, UK, 1978; p. 213. [Google Scholar]
- Mueller, J.L. In-water radiometric profile measurements and data analysis protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; Fargion, G.S., Mueller, J.L., Eds.; NASA Tech. Memo, Goddard Space Flight Center: Greenbelt, MD, USA, 2000; pp. 87–97. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Ahn, Y.H.; Mobley, C.; Arnone, R. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. Opt. Express 2010, 18, 26313–26324. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, N.; Alcântara, E.; Watanabe, F.; Rodrigues, T.; Carmo, A.; Gomes, A.; Andrace, C. Glint Removal Assessment to Estimate the Remote Sensing Reflectance in Inland Waters with Widely Differing Optical Properties. Remote Sens. 2018, 10, 1655. [Google Scholar] [CrossRef]
- Tassan, S.; Ferrari, G.M. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 1995, 40, 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Tassan, S.; Ferrari, G.M. Measurement of light absorption by aquatic particles retained on filters: Determination of the optical path length amplification by the ‘transmittance-reflectance’ method. J. Plankton Res. 1998, 20, 1699–1709. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyllspecific absorptions coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res. 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- Lee, Z.P. An Update of the Quasi-Analytical Algorithm (QAA_v6). IOCCG, 2014. Available online: http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf (accessed on 26 September 2019).
- Mishra, S.; Mishra, D.R.; Lee, Z.P. Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Trans. Geosci. Remote Sens. 2014, 52, 375–388. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Song, K.; Li, Y.; Tedesco, L.P.; Shi, K.; Li, Z. An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application. Remote Sens. Environ. 2013, 135, 150–166. [Google Scholar] [CrossRef]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China. IEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar]
- Yang, W.; Matsushita, B.; Chen, J.; Yoshimura, K.; Fukushima, T. Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3761–3773. [Google Scholar] [CrossRef]
- Yang, W.; Matsushita, B.; Chen, J.; Yoshimura, K.; Fukushima, T. Application of a Semianalytical Algorithm to remotely estimate diffuse attenuation coefficient in turbid waters. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1046–1050. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q. Inversion of chromophoric dissolved organic matter from EO-11 Hyperion imagery for turbid estuarine and coastal waters. IEE Trans. Geosci. Remote Sens. 2013, 51, 3286–3298. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Duan, H.; Boss, E.; Cao, Z. Inversion of inherent optical properties in optically complex waters using sentinel 3A/OLCI images: A case study of China’s three largest freshwater lakes. Remote Sens. Environ. 2019, 225, 328–346. [Google Scholar] [CrossRef]
- Wang, Y.W.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and Calibration of QAA Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and Coastal Waters. Remote Sens. 2017, 9, 1192. [Google Scholar] [CrossRef]
- Ogashawara, I.; Mishra, D.R.; Nascimento, R.F.F.; Alcântara, E.; Kampel, M.; Stech, J.L. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 48–64. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, X.H.; Yin, Y.; Wang, M.Z.; Qin, B.Q. A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance. Opt. Express 2012, 20, 20482–20493. [Google Scholar] [CrossRef] [PubMed]
- Zanter, K. Surface Reflectance Code (LASRC); Product Guide: Sioux Falls, SD, USA, 2019; 39p, Available online: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1368_L8_Surface_Reflectance_Code_LASRC_Product_Guide-v2.0.pdf (accessed on 26 September 2019).
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Butman, D. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Lee, Z.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res.-Ocean. 2007, 112, C03009. [Google Scholar] [CrossRef]
- Wu, G.; Cui, L.; Duan, H.; Fei, T.; Liu, Y. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China. Appl. Opt. 2011, 50, 6358–6369. [Google Scholar] [CrossRef]
- Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.M.; Rudorff, C.M. Implications of scatter corrections for absorption measurements on optical closure of Amazon floodplain lakes using the Spectral Absorption and Attenuation Meter (AC-S Wetlab). Remote Sens. Environ. 2015, 157, 123–137. [Google Scholar] [CrossRef]
- Leymarie, E.; Doxaran, D.; Babin, M. Uncertainties associated to measurements of inherent optical properties in natural waters. Appl. Opt. 2010, 49, 5415–5436. [Google Scholar] [CrossRef]
Acronym | Description | |
AOPs | Apparent optical properties | |
IOPs | Inherent optical properties | |
BB | Barra Bonita Hydroelectric Reservoir | |
BAR | Bariri Hydroelectric Reservoir | |
IBI | Ibitinga Hydroelectric Reservoir | |
NAV | Nova Avanhandava Hydroelectric Reservoir | |
CDOM | Colored dissolved organic matter | |
Chl-a | Chlorophyll-a | |
QAA | Quasi analytical algorithm | |
NAP | Non-algae particles | |
OSC | Optical significant compounds | |
TRCS | Tietê River Cascade System | |
Symbol | Parameter | Unit |
γ | Geometrical light factor | - |
Rrs | Remote sensing reflectance above water surface | sr−1 |
rrs | Remote sensing reflectance below water surface | sr−1 |
Υ | Spectral power of particle backscattering coefficient | - |
S | Spectral slope for non-algae particles (Snap) or CDOM (Scdom) | nm−1 |
SPM | Suspended particulate matter | mg.L−1 |
Ed(λ) | Spectral downwelling irradiance below the water surface | W.m−2. nm−1 |
Es(λ) | Spectral downwelling irradiance incident onto the water surface | W.m−2. nm−1 |
Lt(λ) | Spectral total radiance above water surface | W.m−2.sr−1.nm−1 |
Lsky(λ) | Spectral incident sky radiance | W.m−2.sr−1.nm−1 |
Kd(λ) | Downwelling diffuse attenuation coefficient | m−1 |
a(λ), at(λ) | Spectral total absorption coefficient (a(λ) = acdom(λ)+ ap(λ)+ aw(λ)) | m−1 |
acdom(λ) | Spectral absorption coefficient of CDOM | m−1 |
ap(λ) | Spectral absorption coefficient of particulate matter (ap(λ) = ap(λ)+ anap(λ)) | m−1 |
aφ(λ) | Spectral absorption coefficient of phytoplankton pigments | m−1 |
anap(λ) | Spectral absorption coefficient of non-algae particles | m−1 |
aw(λ) | Spectral absorption coefficient of water | m−1 |
atnw(λ), at-w | Spectral non-water total absorption coefficient | m−1 |
b(λ) | Spectral scattering coefficient | m−1 |
bb(λ) | Spectral total backscattering coefficient (bb(λ)=bbp(λ)+ bbw(λ)) | m−1 |
bbp(λ) | Spectral total backscattering coefficient of particulate matter | m−1 |
bbw(λ) | Spectral total backscattering coefficient of water | m−1 |
u(λ) | Ratio of backscattering coefficient to the sum of absorption and backscattering coefficient (bb(λ)/bb(λ)+ a(λ)) | - |
Z | Depth within the water column | m |
zi | Depth for time - i | m |
ZSD | Secchi disk depth | m |
Q | Ratio between | |
T | radiance transmittance | |
t | time of scan | ms |
water to air internal reflection coefficient | ||
Reference wavelength | nm |
Reservoirs | Field Campaign ID | n | Time Acquisition | Radiometric Variables | Water Quality and Physical Parameters |
---|---|---|---|---|---|
Barra Bonita | BB1/BB2 | 20/20 | May/October, 2014 | Lt, Lsky Es, and Ed at (acdom, aphy, anap) and bb | Turbidity, ZSD, SPM, PIM, POM, Chl-a, Wind Speed and Depth. |
Bariri | BAR1 | 30 | August, 2016 | ||
BAR2 | 18 | June, 2017 | |||
Ibitinga | IBI1 | 30 | July, 2016 | ||
IBI2 | 16 | June, 2017 | |||
Nova Avanhandava | NAV1/NAV2 | 20/20 | May/September, 2014 |
Step | Par. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
0 | T = 0.52 | T = 0.52 | - | - | - | ||
= 1.7 | = 1.7 | ||||||
1 | g0 = 0.089 | - | - | - | - | - | |
g1 = 0.125 | - | - | |||||
2.1 | 555 | 680 | - | 709 | 709 | ||
h0 = −1.146 | −1.226 | −0.0852 | −0.77 | −1.148 | |||
h1 = −1.366 | −1.214 | 0.8650 | 0.099 | 2.814 | |||
h2 = −0.469 | −0.35 | 0.9398 | 0.056 | −5.813 | |||
2.2 | - | - | - | - | 0.05 | ||
440 | 680 * | 412 | 443 | 443 | |||
490 | 490 | 560 | 665 | 665 | |||
640 | - | 665 | 620 | 681 | |||
490 | - | 443 | 443 | 443 | |||
4 | 2.0 | - | m = 1.75 * | - | 1.0–1.9 | – | |
1.2 | n = −0.05 | 1.3–1.5 | – | ||||
−0.9 | - | 0.1–0.8 | – | ||||
- | 665/754 ** | ||||||
6 | C1= 1 | - | - | rrs()/rrs() | - | - |
Model ID | OLI Band | a | b | c | r | Fit |
---|---|---|---|---|---|---|
M1 | 443 | 3.17 | −2.57 | - | 0.73 | Linear |
M2 | 482 | 0.22 | 2.27 | −0.53 | 0.79 | quadratic |
M3 | 561 | 3.50 | 1.39 | - | 0.61 | power |
M4 | 655 | 2.51 | 1.64 | - | 0.74 | power |
Coverage Area | Path/Row | Overpass Date | Overpass Time (UTC) | Gap * |
---|---|---|---|---|
BB2 | 220/076 | 10/13/2014 | 13:10:45 | 3h10m |
BAR1 | 220/076 | 08/15/2016 | 13:10:36 | 2h05m |
IBI1 | 221/075 | 07/21/2016 | 13:16:18 | 3h00m |
NAV1 | 222/075 | 05/02/2014 | 13:22:42 | 2 days |
Parameters | Min–Max | Aver ± SD | Min–Max | Aver ± SD |
---|---|---|---|---|
BB1 | BB2 | |||
SPM * | 3.60–16.30 | 7.20 ± 3.30 | 10.8–44.0 | 21.9 ± 7.00 |
PIM * | 0.20–4.40 | 1.10 ± 0.90 | 0.60–3.80 | 2.60 ± 0.96 |
POM * | 2.80–14.70 | 6.10 ± 3.20 | 10.20–30.40 | 18.20 ± 4.80 |
Chl-a ** | 17.7–279.90 | 120.40 ± 70.30 | 263.2–797.8 | 428.7 ± 154.5 |
Turbidity *** | 1.70–12.50 | 5.20 ± 2.40 | 11.60–33.20 | 18.60 ± 7.60 |
ZSD **** | 0.80–2.30 | 1.50 ± 0.40 | 0.37–0.78 | 0.57 ± 0.10 |
BAR1 | BAR2 | |||
SPM 1 | 3.60–40.30 | 8.30 ± 4.50 | 0.20–2.60 | 1.60 ± 0.44 |
PIM 1 | 0.90–4.00 | 2.30 ± 0.50 | 0.20–1.30 | 0.60 ± 0.24 |
POM 1 | 1.40–36.30 | 5.9 ± 4.50 | 0.40–1.60 | 1.10 ± 0.32 |
Chl-a 2 | 25.7–709.9 | 119.80 ± 96.40 | 3.80–19.00 | 8.00 ± 3.27 |
Turbidity 3 | 7.80–80.90 | 16.60 ± 7.60 | 3.50–8.80 | 5.70 ± 1.25 |
ZSD 4 | 0.50–1.60 | 1.20 ± 0.20 | 1.60–3.20 | 2.20 ± 0.19 |
IBI1 | IBI2 | |||
SPM 1 | 1.00–8.10 | 2.60 ± 1.00 | 0.20–2.20 | 1.06 ± 0.57 |
PIM 1 | 0.30–2.60 | 0.80 ± 0.30 | 0.20–1.00 | 0.40 ± 0.24 |
POM 1 | 0.50–6.00 | 1.80 ± 0.90 | 0.30–1.90 | 0.93 ± 0.46 |
Chl-a 2 | 1.37–119.0 | 21.80 ± 18.7 | 2.50–13.70 | 6.64 ± 4.46 |
Turbidity 3 | 2.80–8.90 | 4.30 ± 0.80 | 1.80–3.60 | 2.47 ± 0.52 |
ZSD 4 | 1.60–3.20 | 2.20 ± 0.20 | 1.90–3.80 | 2.90 ± 0.57 |
NAV1 | NAV2 | |||
SPM 1 | 0.10–2.60 | 1.00 ± 0.60 | 0.50–2.80 | 1.00 ± 0.38 |
PIM 1 | 0.10–2.20 | 0.70 ± 0.50 | 0.30–1.10 | 0.50 ± 0.14 |
POM 1 | 0.20–0.90 | 0.50 ± 0.20 | 0.14–2.00 | 0.50 ± 0.34 |
Chl-a 2 | 2.50–12.60 | 6.20 ± 2.50 | 4.51–20.50 | 9.01 ± 3.15 |
Turbidity 3 | 1.00–2.50 | 1.70 ± 0.40 | 1.01–2.56 | 1.73 ± 0.33 |
ZSD 4 | 2.30–4.80 | 3.20 ± 0.60 | 0.40–4.80 | 1.15 ± 1.12 |
Estimated at (m−1) | Estimated bb(m−1) | |||||
---|---|---|---|---|---|---|
QAA | δ | nRMSE | MAPE | δ | nRMSE | MAPE |
Lv5 | −0.67 | 18.8 | 42.3 | −0.07 | 18.3 | 79.3 |
BBHR | −0.67 | 20.8 | 37.4 | −0.08 | 19.8 | 47.0 |
OMW | −0.75 | 21.8 | 43.9 | −0.08 | 19.7 | 39.0 |
CDOM | −0.32 | 17.7 | 37.6 | −0.06 | 18.8 | 48.1 |
V | −0.60 | 20.4 | 37.7 | −0.04 | 19.4 | 73.5 |
TRCS | −0.39 | 16.8 | 30.7 | −0.06 | 18.6 | 39.5 |
DATASET | 443 | 482 | 561 | 655 | Average |
---|---|---|---|---|---|
TRCS | 22.93 | 22.26 | 19.16 | 19.74 | 21.02 |
BB1 | 35.93 | 24.80 | 21.06 | 22.41 | 26.05 |
BB2 | 101.99 | 71.58 | 53.33 | 62.49 | 72.35 |
BAR1 | 55.59 | 41.15 | 33.43 | 25.83 | 39.00 |
BAR2 | 80.54 | 43.12 | 35.99 | 46.03 | 51.42 |
IBI2 | 52.64 | 62.15 | 24.97 | 22.17 | 40.48 |
NAV1 | 95.61 | 61.35 | 33.57 | 35.51 | 56.51 |
NAV2 | 147.39 | 120.03 | 77.23 | 61.62 | 101.57 |
Average | 81.38 | 60.60 | 39.94 | 39.44 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, N.; do Carmo, A.; Park, E.; Alcântara, E. Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme. Remote Sens. 2019, 11, 2283. https://doi.org/10.3390/rs11192283
Bernardo N, do Carmo A, Park E, Alcântara E. Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme. Remote Sensing. 2019; 11(19):2283. https://doi.org/10.3390/rs11192283
Chicago/Turabian StyleBernardo, Nariane, Alisson do Carmo, Edward Park, and Enner Alcântara. 2019. "Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme" Remote Sensing 11, no. 19: 2283. https://doi.org/10.3390/rs11192283
APA StyleBernardo, N., do Carmo, A., Park, E., & Alcântara, E. (2019). Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme. Remote Sensing, 11(19), 2283. https://doi.org/10.3390/rs11192283