Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard
<p>Location of the study area. The black grid represents the variable rate drip irrigation (VRDI) system over the entire vineyard. Orange dotted lines indicate 30 m resolution pixels in the Landsat WRS grid (UTM zone 10 N). Blue boxes highlight the four study blocks within the vineyard. Red dots represent the flux tower location within each study block. Yellow bars represent median and maximum fetch distances in the median wind direction.</p> "> Figure 2
<p>ET product delivery date (x-axis) and the corresponding date of last available Landsat 8 T1 image (y-axis, orange square). Latency (second y-axis; gray bars) represents the number of days between the ET product delivery date and date of last available Landsat 8 T1 image. One to one line indicates hypothetical zero latency between ET product delivery date and Landsat 8 T1 image.</p> "> Figure 3
<p>Scatterplots comparing observed (closure corrected) and modeled weekly ET (mm week<sup>−1</sup>) from the baseline retrospective DisALEXI + fusion model (ET<sub>a</sub>-retro) run, operational DisALEXI + fusion model (ET<sub>a</sub>-OP) and the modified FAO-56 (ET<sub>c</sub>) model for blocks 1, 2, 3 and 4 (top to bottom, left to right).</p> "> Figure 4
<p>Time series of observed (gray area indicating bounds between closed and unclosed), ET<sub>a</sub>-OP (red), ET<sub>a</sub>-retro (blue), and ET<sub>c</sub> (green) weekly total ET (mm week<sup>−1</sup>) for blocks 1, 2, 3 and 4 (top to bottom) during the growing season of 2018. Also included is the amount of applied irrigation within each block (black vertical bars) and daily measurements of soil moisture (volumetric water content) at 30 cm, 60 cm and 90 cm depth. Yellow transparent boxes in the top two panels indicate the period of withheld irrigation between 14 June and 23 July 2018.</p> "> Figure 5
<p>Spatial maps of ET<sub>a</sub>-retro (left column), LST (second from left column), ET<sub>c</sub> (third from left column), and NDVI (right column) over the VRDI (black grid) equipped vineyard for Landsat 8 T1 overpass dates specified on the y-axis. Note that scales are representative of the vineyard range for each model run to best portray spatial discrepancies between models and dates; however, the magnitude of the color bar range is fixed.</p> "> Figure 6
<p>Spatial maps of ET<sub>a</sub>-OP (left column), ET<sub>a</sub>-retro (second from left column), ET<sub>c</sub> (third from left column), and applied irrigation (right column) over the VRDI (black grid) equipped vineyard for the weekly model completion dates specified on the y-axis. Note that scales are held constant between ET models and dates to represent time varying changes in modeled ET.</p> "> Figure 7
<p>Time series of error (absolute difference; orange triangles) between ET<sub>a</sub>-OP derived weekly total ET<sub>a</sub> and observed weekly total ET<sub>a</sub> (closed) for each ET product delivery date (x-axis). Transparent boxes indicate a transition in ET product delivery date when there was an updated Landsat 8 image (blue = decrease in error over transition; yellow = increase in error over transition).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Field Measurements
2.3. ET Remote Sensing Framework and Irrigation Strategy
2.3.1. Vineyard Irrigation Strategy
2.3.2. Thermal-Based ETa Estimation
2.3.3. Vegetation Index-Based ETc Estimation
3. Results
3.1. Comparisons with Tower Observations
3.2. Time Series Analysis
3.3. Spatial and Temporal Response to Irrigation and Stress
3.3.1. Landsat Overpass Dates
3.3.2. Operational Application
4. Discussion
4.1. Improvements in TIR Revisit and Data Latency
4.2. Value of Actual ET for Irrigation Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heilman, J.; McInnes, K.; Gesch, R.; Lascano, R.; Savage, M. Effects of trellising on the energy balance of a vineyard. Agric. For. Meteorol. 1996, 81, 79–93. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Walker, R.R.; Loveys, B.R.; Blackmore, D.H. Determination of transpiration in irrigated grapevines: Comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig. Sci. 2000, 20, 1–8. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Galleguillos, M.; Jacob, F.; Prevolt, L.; Lagacherie, P.; Liang, S.L. Mapping evapotranspiration over a Mediterranean vineyard watershed. IEEE Geosci Remote Sens. Lett. 2011, 8, 168–172. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Viticult. 2008, 59, 30–38. [Google Scholar]
- Shellie, K.C. Vine and berry response of merlot (Vitis vinifera L.) to differential water stress. Am. J. Enol. Viticult. 2006, 57, 514–518. [Google Scholar]
- Sivilotti, P.; Bonetto, C.; Paladin, M.; Peterlunger, E. Effect of soil moisture availability on Merlot: From leaf water potential to grape composition. Am. J. Enol. Viticult. 2005, 56, 9–18. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Wright, J.L. New evapotranspiration crop coefficients. J. Irrig. Draingae Div. 1982, 108, 57–74. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling. In Irrigation and Drainage: Today’s Challenges; ACSE: New York, NY, USA, 1980; pp. 390–397. [Google Scholar]
- Bausch, W.C.; Neale, C.M.U. Crop Coefficients Derived from Reflected Canopy Radiation: A Concept. Trans. ASAE 1987, 30, 703–709. [Google Scholar] [CrossRef]
- Choudhury, B.; Ahmed, N.; Idso, S.; Reginato, R.; Daughtry, C. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 24, 1–14. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Er-Raki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J.; Kharrou, M.; et al. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 2006, 79, 1–27. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Er-Raki, S.; Chehbouni, A.; Boulet, G.; Williams, D.G. Using the dual approach for FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric. Water. Manag. 2010, 97, 1769–1778. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Lagos, L.O.; Kleissl, J.; Morales, L.; Poblete-Echeverría, C.; Allen, R.G. Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrig. Sci. 2012, 30, 485–497. [Google Scholar] [CrossRef]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S. Thermal Infrared Measurements as an Indicator of Plant Ecosystem Health. In Thermal remote sensing in land surface processes; Quattrochi, D.A., Luvall, J., Eds.; Taylor & Francis: Philadelphia, PA, USA, 2003; pp. 257–282. [Google Scholar]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us about the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Anderson, M.C.; Yilmaz, M.T. Diagnosing neglected moisture sources/sink processes with a thermal infrared-based Two-Source Energy Balance model. J. Hydrometeorol. 2015, 16, 1070–1086. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.E.; Basara, J.B.; Svoboda, M. Examining Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index. J. Hydrometeorol. 2013, 14, 1057–1074. [Google Scholar] [CrossRef]
- Andserson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Li, F.; Prueger, J.H.; Mecikalski, J.R. A climatological study of evapotranspiration and moisture stress across the continental United States: I. Model formulation. J. Geophys. Res. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, P.J.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States: II. Surface moisture climatology. J. Geophys. Res. 2007, 112, D11112. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; French, A.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W.; Norman, J.M. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 1221. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales. J. Hydrometeorol. 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Schwaller, M.; Hall, F.; Gao, F.; Masek, J. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Cammalleri, C.; Anderson, M.; Gao, F.; Hain, C.; Kustas, W. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Anderson, M.; Gao, F.; Knipper, K.; Hain, C.; Dulaney, W.; Baldocchi, D.; Eichelmann, E.; Hemes, K.; Yang, Y.; Medellin-Azuara, J.; et al. Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sens. 2018, 10, 889. [Google Scholar] [CrossRef]
- Anderson, M.; Diak, G.; Gao, F.; Knipper, K.; Hain, C.; Eichelmann, E.; Hemes, K.S.; Baldocchi, D.; Kustas, W.; Yang, Y. Impact of Insolation Data Source on Remote Sensing Retrievals of Evapotranspiration over the California Delta. Remote Sens. 2019, 11, 216. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef]
- Sun, L.; Anderson, M.C.; Gao, F.; Hain, C.R.; Alfieri, J.G.; Sharifi, A.; McCarty, G.W.; Yang, Y.; Kustas, W.P. Investigating water use over the Choptank River Watershed using a multi-satellite data fusion approach. Water Resour. Res. 2017, 53, 5298–5319. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wynne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Anderson, M.C.; Gao, F.; Wardlow, B.; Hain, C.R.; Otkin, J.A.; Alfieri, J.; Yang, Y.; Sun, L.; Dulaney, W. Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA. Remote Sens. Environ. 2018, 210, 387–402. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H.; et al. Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig. Sci. 2018, 37, 431–449. [Google Scholar] [CrossRef]
- Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Knipper, K.R. The Grape Remote Sensing Atmospheric profile and Evapotranspiration eXperiment (GRAPEX). Bull. Amer. Meteor. Soc. 2017, 99, 1791–1812. [Google Scholar] [CrossRef]
- Sanchez, L.A.; Sams, B.; Alsina, M.M.; Hinds, N.; Klein, L.J.; Dokoozlian, N. Improving vineyard water use efficiency and yield with variable rate irrigation in California. Adv. Anim. Biosci. 2017, 8, 574–577. [Google Scholar] [CrossRef]
- Hsieh, C.I.; Katul, G.; Chi, T.W. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Evett, S.R.; Basara, J.B.; Neale, C.M.U.; French, A.N.; Colaizzi, P.D.; Agam, N.; et al. On the discrepancy between eddy covariance and lysimetry-based turbulent flux measurements under strongly advective conditions. Adv. Water Resour. 2012, 78, 50–62. [Google Scholar]
- Twine, T.; Kustas, W.; Norman, J.; Cook, D.; Houser, P.; Meyers, T.; Prueger, J.; Starks, P.; Wesely, M. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- French, A.; Norman, J.; Anderson, M.; Anderson, M. A simple and fast atmospheric correction for spaceborne remote sensing of surface temperature. Remote Sens. Environ. 2003, 87, 326–333. [Google Scholar] [CrossRef]
- Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.E.; Ederer, G.; Pedelty, J.; Nightingale, J.; Gao, F.; Morisette, J.T.; Masuoka, E.; Myneni, R.; Tan, B. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geosci. Remote Sens. Lett. 2008, 5, 60–64. [Google Scholar]
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN 7; Geophysics Laboratory: Hanscom AFB, MA, USA, 1989. [Google Scholar]
- Pruitt, W.O.; Doorenbos, J. Empirical Calibration: A Requisite for Evapotranspiration Formulae Based on Daily or Longer Mean Climatic Data. In Proceedings of the ICID International Roundtable Conference on Evapotranspiration. International Commission of Irrigation and Drainage, Budapest, Hungary, 26–28 May 1977. [Google Scholar]
- Heilman, J.L.; Heilman, W.E.; Moore, D.G. Evaluating the crop coefficient using spectral reflectance. Agron. J. 1982, 74, 967–971. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1992, 11, 185–200. [Google Scholar] [CrossRef]
- Moran, M.S.; Maas, S.J.; Pinter, P.J. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sens. Rev. 1995, 12, 335–353. [Google Scholar] [CrossRef]
- Consoli, S.; Barbagallo, S. Estimating Water Requirements of an Irrigated Mediterranean Vineyard Using a Satellite-Based Approach. J. Irrig. Drain. Eng. 2012, 138, 896–904. [Google Scholar] [CrossRef]
- Sequin, B.; Becker, F.; Phulpin, T.; Gu, X.F.; Guyot, G.; Kerr, Y.; King, C.; Lagouarde, J.P.; Ottlé, C.; Stoll, M.P.; et al. IRSUTE: A minisatellite project for land surface heat flux estimation from field to regional scale. Remote Sens. Environ. 1999, 68, 357–369. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Anderson, M.C.; Kustas, W.P.; Cammalleri, C. Effect of the revisit interval and temporal upscaling methods on the accuracy of remotely sensed evapotranspiration estimates. Hydrol. Earth Syst. Sci. 2017, 21, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.C.; Olioso, A.; Hook, S.J.; Fisher, J.B.; Lagouarde, J.-P.; Vermote, E.F. Impact of the Revisit of Thermal Infrared Remote Sensing Observations on Evapotranspiration Uncertainty—A Sensitivity Study Using AmeriFlux Data. Remote Sens. 2019, 11, 573. [Google Scholar] [CrossRef]
- Markham, B.L.; Jenstrom, D.; Masek, J.G.; Dabney, P.; Pedelty, J.A.; Barsi, J.A.; Montanaro, M. Landsat 9: Status and Plans. In Proceedings of the SPIE 9972, Earth Observing Systems XXI, 99720G, San Diego, CA, USA, 19 September 2016. [Google Scholar] [CrossRef]
- Fisher, J.B.; Hook, R.; Allen, R.G.; Anderson, M.C.; French, A.N.; Hain, C.R.; Hulley, G.; Wood, E.F. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS): Science Motivation. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
Site | Statistic | ETa-retro | ETa-OP | Site | Statistic | ETa-retro | ETa-OP | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Daily | Weekly | Daily | Weekly | Daily | Weekly | Daily | Weekly | ||||
1 | Mean Obs | 4.64 | 4.64 | 4.64 | 4.64 | 2 | Mean Obs | 4.67 | 4.70 | 4.67 | 4.70 |
Mean Mod | 4.77 | 4.77 | 4.52 | 4.52 | Mean Mod | 4.80 | 4.80 | 4.60 | 4.60 | ||
R2 | 0.38 | 0.55 | 0.41 | 0.55 | R2 | 0.53 | 0.68 | 0.57 | 0.71 | ||
MBE | 0.13 | 0.16 | −0.09 | −0.12 | MBE | 0.11 | 0.13 | −0.09 | −0.10 | ||
RMSE | 1.00 | 0.81 | 0.98 | 0.83 | RMSE | 0.84 | 0.67 | 0.87 | 0.71 | ||
MAE | 0.80 | 0.68 | 0.79 | 0.69 | MAE | 0.66 | 0.58 | 0.71 | 0.61 | ||
% Error | 17.28 | 14.61 | 17.12 | 14.96 | % Error | 14.07 | 12.29 | 15.13 | 12.94 | ||
3 | Mean Obs | 4.62 | 4.62 | 4.62 | 4.62 | 4 | Mean Obs | 5.28 | 5.44 | 5.28 | 5.44 |
Mean Mod | 5.00 | 5.00 | 4.73 | 4.73 | Mean Mod | 4.98 | 4.98 | 4.72 | 4.72 | ||
R2 | 0.58 | 0.67 | 0.64 | 0.71 | R2 | 0.73 | 0.76 | 0.69 | 0.72 | ||
MBE | 0.39 | 0.40 | 0.12 | 0.11 | MBE | −0.31 | −0.44 | −0.61 | −0.72 | ||
RMSE | 1.08 | 0.92 | 0.94 | 0.79 | RMSE | 0.81 | 0.79 | 1.03 | 1.01 | ||
MAE | 0.85 | 0.74 | 0.75 | 0.65 | MAE | 0.61 | 0.55 | 0.82 | 0.80 | ||
% Error | 18.41 | 15.99 | 16.23 | 14.05 | % Error | 11.48 | 10.06 | 15.53 | 14.64 |
10-Jun | 26-Jun | 12-Jul | 28-Jul | 13-Aug | |
---|---|---|---|---|---|
Observed | 0.56 | 1.29 | 2.09 | 0.86 | −0.02 |
ETa-OP | −0.08 | 0.23 | 0.90 | 0.03 | 0.09 |
ETc | −0.12 | −0.08 | −0.06 | 0.06 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alsina, M.M.; Hain, C.R.; Alfieri, J.G.; Prueger, J.H.; Gao, F.; McKee, L.G.; Sanchez, L.A. Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard. Remote Sens. 2019, 11, 2124. https://doi.org/10.3390/rs11182124
Knipper KR, Kustas WP, Anderson MC, Alsina MM, Hain CR, Alfieri JG, Prueger JH, Gao F, McKee LG, Sanchez LA. Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard. Remote Sensing. 2019; 11(18):2124. https://doi.org/10.3390/rs11182124
Chicago/Turabian StyleKnipper, Kyle R., William P. Kustas, Martha C. Anderson, Maria Mar Alsina, Christopher R. Hain, Joseph G. Alfieri, John H. Prueger, Feng Gao, Lynn G. McKee, and Luis A. Sanchez. 2019. "Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard" Remote Sensing 11, no. 18: 2124. https://doi.org/10.3390/rs11182124
APA StyleKnipper, K. R., Kustas, W. P., Anderson, M. C., Alsina, M. M., Hain, C. R., Alfieri, J. G., Prueger, J. H., Gao, F., McKee, L. G., & Sanchez, L. A. (2019). Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard. Remote Sensing, 11(18), 2124. https://doi.org/10.3390/rs11182124