Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data
"> Figure 1
<p>WorldView image areas. 21 December 2014 and 30 December 2015 (red), 7 January 2017 (green) and 9 January 2018 (blue). The red-green-blue image of the 2014 capture is also shown. The study sites are shown in yellow (LFS in the center and YAI on the right).</p> "> Figure 2
<p>Training-validation-test model extraction methods with multi-season data. (<b>a</b>) The three-fold cross validation procedure used to select the best Lasso <math display="inline"><semantics> <mi>α</mi> </semantics></math> and evaluate the model against held-back test data. (<b>b</b>) Randomly assigning training/validation and test data points from all seasons data. (<b>c</b>) Randomly assigning training/validation and test data points from three seasons data and testing the extracted model on the fourth season. (<b>d</b>) Training a model on two seasons data and validating on a third season (repeating this three times for all combinations of training/validation data), then testing the extracted model on the fourth season. Note, only the first of the three folds in the cross validation procedure of (<b>a</b>) is shown in (<b>b</b>,<b>d</b>).</p> "> Figure 3
<p>Coefficient of determination R<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> between sampled nitrogen uptake and derived image indexes. (<b>a</b>) Ratios of image bands (<math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> </mrow> </semantics></math>). (<b>b</b>) Normalized difference ratios of image bands (<math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Nitrogen uptake vs. NDVI (<b>a</b>) and NDRE (<b>b</b>).</p> "> Figure 5
<p>Comparison of fitting equations, (<b>a</b>) N vs. NDRE. (<b>b</b>) ln(N) vs. NDRE. (<b>c</b>) N vs. NDRE<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>.</p> "> Figure 6
<p>Comparison of sampled and predicted N uptake from the 2017 experiment at the LFS site. Red indicates 0 kg/ha, green indicates 200 kg/ha N uptake. (<b>a</b>) Sampled. (<b>b</b>) Predicted. (<b>c</b>) Graph showing sampled vs. predicted N uptake per plot.</p> "> Figure 7
<p>Regression of N uptake vs. NDRE<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> per year.</p> "> Figure 8
<p>RMSE for the Lasso model as a function of <math display="inline"><semantics> <mi>α</mi> </semantics></math> including all variables (last row of <a href="#remotesensing-11-01837-t005" class="html-table">Table 5</a>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. PI N Sampling Methodology
2.3. Climate Data
2.4. Worldview Satellite Data
2.5. Data Pre-Processing
- Satellite remote sensed data (average band reflectances per plot).
- Aggregated climate (GDD, Solar, ETo) data and number of days between dates of first flush, permanent water, sample collection, image capture.
- Field rice sample data (N uptake per plot). For most experiments in Table 1, the plots were sampled numerous times to correspond with dates of image capture and growth stage. So the dataset had a row for each of these samples (i.e., multiple rows per plot).
2.6. N Uptake Models
2.6.1. Single-Variable Models
2.6.2. Multi-Variable Models
2.6.3. Multi-Season Models
3. Results
3.1. Correlation between Remotely Sensed Data and N Uptake
3.2. Effect of Secondary Variables On Models
3.3. Effect of Different Sampling and Image Dates
3.4. Improving the Accuracy of The Model
3.5. Model Consistency with Season
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nat. Lond. 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crops Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Raun, W.R.; Johnson, G.V. Improving Nitrogen Use Efficiency for Cereal Production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Ten Berge, H.F.M.; Thiyagarajan, T.M.; Shi, Q.; Wopereis, M.C.S.; Drenth, H.; Jansen, M.J.W. Numerical optimization of nitrogen application to rice. Part I. Description of MANAGE-N. Field Crops Res. 1997, 51, 29–42. [Google Scholar] [CrossRef]
- Ten Berge, H.F.M.; Shi, Q.; Zheng, Z.; Rao, K.S.; Riethoven, J.J.M.; Zhong, X. Numerical optimization of nitrogen application to rice. Part II. Field evaluations. Field Crops Res. 1997, 51, 43–54. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B.W. Modeling for recommending panicle nitrogen topdressing rates for yield and milled-rice protein content. J. Crop Sci. Biotechnol. 2012, 15, 335–343. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active canopy sensor-based precision N management strategy for rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Samonte, S.O.P.; Wilson, L.T.; Medley, J.C.; Pinson, S.R.M.; McClung, A.M.; Lales, J.S. Nitrogen Utilization Efficiency. Agron. J. 2006, 98, 168–176. [Google Scholar] [CrossRef]
- Gunawardena, T.A.; Fukai, S.; Blamey, F.P.C. Low temperature induced spikelet sterility in rice. I. Nitrogen fertilisation and sensitive reproductive period. Aust. J. Agric. Res. 2003, 54, 937–946. [Google Scholar] [CrossRef]
- Xue, L.; Li, G.; Qin, X.; Yang, L.; Zhang, H. Topdressing nitrogen recommendation for early rice with an active sensor in south China. Precis. Agric. 2014, 15, 95–110. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yang, C.M.; Chang, K.W.; Shen, Y. A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy. Agron. J. Madison 2008, 100, 205–212. [Google Scholar] [CrossRef]
- Dunn, T.; Dunn, B. Identifying Panicle Initiation in Rice. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/449823/identifying-panicle-initiation-in-rice.pdf (accessed on 2 May 2019).
- Dunn, B.W.; Dunn, T.S.; Orchard, B.A. Nitrogen rate and timing effects on growth and yield of drill-sown rice. Crop Pasture Sci. 2016, 67, 1149–1157. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Cruz, P.C.S.; Gines, G.C.; Samson, M.I.; Descalsota, J.P.; Alcantara, J.M.; Dizon, M.A.; Olk, D.C. Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant Soil 1996, 182, 267–278. [Google Scholar] [CrossRef]
- Russell, C.A.; Dunn, B.W.; Batten, G.D.; Williams, R.L.; Angus, J.F. Soil tests to predict optimum fertilizer nitrogen rate for rice. Field Crops Res. 2006, 97, 286–301. [Google Scholar] [CrossRef]
- Dunn, B. Improving Topdressing Recommendations for Rice. Available online: https://agrifuturesrice.squarespace.com/s/Improving-topdressing-recommendations-for-rice.pdf (accessed on 2 May 2019).
- Haefele, S.M.; Wopereis, M.C.S. Spatial variability of indigenous supplies for N, P and K and its impact on fertilizer strategies for irrigated rice in West Africa. Plant Soil 2005, 270, 57–72. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Stavrakoudis, D.; Katsantonis, D.; Kadoglidou, K.; Kalaitzidis, A.; Gitas, I.Z. Estimating Rice Agronomic Traits Using Drone-Collected Multispectral Imagery. Remote Sens. 2019, 11, 545. [Google Scholar] [CrossRef]
- Moharana, S.; Dutta, S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2016, 122, 17–29. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukin, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. Madison 2002, 94, 815. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Gobbett, D.L. Regional scale application of the precision agriculture thought process to promote improved fertilizer management in the Australian sugar industry. Precis. Agric. 2019, 20, 362–378. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Ryu, C.; Suguri, M.; Umeda, M. Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crops Res. 2011, 122, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Dunn, B.W.; Dehaan, R.; Schmidtke, L.M.; Dunn, T.S.; Meder, R. Using Field-Derived Hyperspectral Reflectance Measurement to Identify the Essential Wavelengths for Predicting Nitrogen Uptake of Rice at Panicle Initiation. J. Near Infrared Spectrosc. 2016, 24, 473–483. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Front. Plant Sci. 2018, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef]
- Tu, Y.H.; Phinn, S.; Johansen, K.; Robson, A. Assessing Radiometric Correction Approaches for Multi-Spectral UAS Imagery for Horticultural Applications. Remote Sens. 2018, 10, 1684. [Google Scholar] [CrossRef]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Gennaro, S.F.D.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Miao, Y.; Yuan, F.; Gnyp, M.L.; Yao, Y.; Cao, Q.; Wang, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef]
- Nurulhuda, K.; Gaydon, D.S.; Jing, Q.; Zakaria, M.P.; Struik, P.C.; Keesman, K.J. Nitrogen dynamics in flooded soil systems: An overview on concepts and performance of models. J. Sci. Food Agric. 2018, 98, 865–871. [Google Scholar] [CrossRef]
- Hornbuckle, J.W.; Christen, E.W. Physical Properties of Soils in the Murrumbidgee and Coleambally Irrigation Areas. Available online: https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:76ba0c1d-8687-4114-847e-f2e6dac6c94b (accessed on 5 July 2019).
- Troldahl, D.; Dunn, B.; Fowler, J.; Garnett, L.; Groat, M.; Mauger, T. Rice Growing Guide 2018. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/829330/RGG-accessible-22Aug2018.pdf (accessed on 7 May 2019).
- Darbyshire, R.; Crean, E.; Dunn, T.; Dunn, B. Predicting panicle initiation timing in rice grown using water efficient systems. Field Crops Res. 2019, 239, 159–164. [Google Scholar] [CrossRef]
- Daun, J.K.; DeClercq, D.R. Comparison of combustion and Kjeldahl methods for determination of nitrogen in oilseeds. J. Am. Oil Chem. Soc. 1994, 71, 1069–1072. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s standardized reference evapotranspiration equation. In Proceedings of theWatershed Management 2000 and Operations Management 2000, Collins, CO, USA, 20–24 June 2000. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; p. 6. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to Make Use of Plant Sensors-Based Diagnostic Information for Nitrogen Recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
Year | Site | Exp | N Rates (kg/ha) | Varieties | Plots | First Flush | Perm Water | Sample | Image |
---|---|---|---|---|---|---|---|---|---|
2015 | LFS | 0, 60, 120, 180, 240 | R, S, L, T | 80 | 16 Oct 2014 | 20 Nov 2014 | 29 Dec 2014 | 21 Dec 2014 | |
2015 | YAI | SD1 | 0, 60, 120, 180 | R, S, L, T | 48 | 10 Oct 2014 | 19 Nov 2014 | 30 Dec 2014 | 21 Dec 2014 |
2015 | YAI | SD2 | 0, 60, 120, 180 | R, S, L, T | 48 | 27 Oct 2014 | 27 Nov 2014 | 5 Jan 2015 | 21 Dec 2014 |
2016 | LFS | SD1 | 75, 150, 225, 300 | R, S, L, T | 48 | 21 Oct 2015 | 26 Nov 2015 | 30 Dec 2015 | 30 Dec 2015 |
2016 | LFS | SD2 | 75, 150, 225, 300 | R, S, L, T | 48 | 5 Nov 2015 | 4 Dec 2015 | 31 Dec 2015 | 30 Dec 2015 |
2016 | YAI | 0, 60, 120, 180, 240 | R, S, L, T | 60 | 15 Oct 2015 | 20 Nov 2015 | 30 Dec 2015 | 30 Dec 2015 | |
2017 | LFS | 0, 60, 120, 180, 240, 300 | R, S, L, T | 72 | 31 Oct 2016 | 2 Dec 2016 | 6 Jan 2017 | 7 Jan 2017 | |
2017 | YAI | 0, 60, 120, 180, 240 | R, S, L, T | 60 | 20 Oct 2016 | 1 Dec 2016 | 9 Jan 2017 | 7 Jan 2017 | |
2018 | LFS | 0, 60, 120, 180, 240, 300 | R, L, T | 54 | 30 Oct 2017 | 30 Nov 2017 | 6 Jan 2018 | 9 Jan 2018 | |
2018 | YAI | 0, 60, 120, 180 | R, L, T | 36 | 27 Oct 2017 | 1 Dec 2017 | 6 Jan 2018 | 9 Jan 2018 |
Abbreviation | Band | Band Edges (nm) |
---|---|---|
c | Coastal | 400–450 |
b | Blue | 450–510 |
g | Green | 510–580 |
y | Yellow | 585–625 |
r | Red | 630–690 |
re | Red edge | 705–745 |
nir | Near infrared | 770–895 |
nir2 | Near infrared 2 | 860–1040 |
Variable | Value | Points | a | R | RMSE (kg/ha) | Group |
---|---|---|---|---|---|---|
ALL | ALL | 554 | 457 | 0.75 | 22.8 | |
Year | 2015 | 176 | 450 | 0.71 | 15.5 | b |
2016 | 156 | 528 | 0.69 | 19.2 | c | |
2017 | 132 | 473 | 0.85 | 23.1 | bc | |
2018 | 90 | 387 | 0.80 | 22.7 | a | |
Variety | Sherpa™ | 116 | 491 | 0.81 | 19.5 | b |
Reiziq™ | 146 | 409 | 0.76 | 22.9 | a | |
Langi | 146 | 464 | 0.79 | 21.2 | b | |
Topaz™ | 146 | 499 | 0.79 | 20.5 | b | |
Site | LFS | 302 | 452 | 0.83 | 20.0 | a |
YAI | 252 | 463 | 0.61 | 25.6 | a | |
Sow date | Early | 296 | 485 | 0.77 | 21.0 | a |
Late | 258 | 431 | 0.77 | 22.9 | a |
Days (Image-Sample) | Points | a | R |
---|---|---|---|
−30 | 176 | 586 | 0.59 |
−20 | 48 | 492 | 0.27 |
−10 | 284 | 534 | 0.64 |
0 | 600 | 451 | 0.76 |
10 | 36 | 336 | 0.63 |
Input Variables | Best | # X | # (X) | # Selected X | Train R | Test R | Train RMSE | Test RMSE | Three Most Important X |
---|---|---|---|---|---|---|---|---|---|
NDVI | 0 | 1 | 1 | 1 | 0.24 | 0.30 | 38.1 | 41.4 | NDVI |
NDRE | 0 | 1 | 1 | 1 | 0.72 | 0.74 | 23.2 | 25.5 | NDRE |
NDRE | 0 | 1 | 1 | 1 | 0.74 | 0.77 | 22.3 | 23.7 | NDRE |
CIre | 0 | 1 | 1 | 1 | 0.73 | 0.77 | 22.8 | 23.8 | CIre |
CIg | 0 | 1 | 1 | 1 | 0.63 | 0.67 | 26.7 | 28.5 | CIg |
SAVI | 0 | 1 | 1 | 1 | 0.62 | 0.67 | 26.9 | 28.5 | SAVI(nir,re) |
RSI4 | 0.01 | 6 | 27 | 19 | 0.83 | 0.82 | 18.2 | 20.8 | RSI(r,g) × RSI(re,g), RSI(r,g), RSI(re,g) |
RSI8 | 0.1 | 28 | 434 | 24 | 0.86 | 0.85 | 16.2 | 19.5 | RSI(nir2,re) × RSI(nir2,nir), |
RSI(b,c) × RSI(re,r), RSI(nir2,c) × RSI(nir2,re) | |||||||||
NDSI4 | 0.04 | 6 | 27 | 10 | 0.82 | 0.82 | 18.4 | 21.0 | NDSI(nir,re), NDSI(r,g) × NDSI(re,g), |
NDSI(r,g) | |||||||||
NDSI8 | 0.1 | 28 | 434 | 21 | 0.86 | 0.85 | 16.2 | 18.9 | NDSI(nir2,re), NDSI(re,c), |
NDSI(y,c) × NDSI(r,b) | |||||||||
R4 | 0.004 | 4 | 14 | 13 | 0.87 | 0.87 | 15.7 | 17.7 | nir, re × nir, r × re |
R8 | 0.004 | 8 | 44 | 29 | 0.90 | 0.90 | 13.9 | 16.0 | b × r, c × b, c |
R8 × variety | 0.02 | 12 | 90 | 36 | 0.91 | 0.89 | 13.3 | 16.2 | nir2, g × re, g × nir |
R8 × climate | 0.02 | 29 | 464 | 39 | 0.92 | 0.91 | 12.7 | 14.6 | nir2, re × nir, nir × Rain(image-PW) |
R8 × variety × climate | 0.020 | 33 | 594 | 61 | 0.93 | 0.91 | 11.7 | 14.9 | re × r, nir × Sow_week, nir × Rain(image-PW) |
As above, all sample dates | 0.004 | 33 | 594 | 110 | 0.93 | 0.90 | 12.4 | 14.2 | y × Sow_week, nir × Solar(image-PW), g × re |
Test Year | Best | # X | # (X) | # Selected X | Train R | Test R | Train RMSE | Test RMSE |
---|---|---|---|---|---|---|---|---|
2015 | 0.002 | 9 | 54 | 43 | 0.93 | 0.65 | 13.2 | 17.2 |
2016 | 0.001 | 9 | 54 | 53 | 0.92 | 0.38 | 13.5 | 27.2 |
2017 | 0.001 | 9 | 54 | 48 | 0.89 | −27.04 | 12.6 | 311.1 |
2018 | 0.004 | 9 | 54 | 29 | 0.91 | −6.47 | 13.5 | 140.4 |
Test Year | Best | # X | # (X) | # Selected X | Train R | Test R | Train RMSE | Test RMSE | Three Most Important X |
---|---|---|---|---|---|---|---|---|---|
2015 | 10.0 | 9 | 54 | 3 | 0.79 | 0.67 | 22.5 | 16.8 | nir2 × NDRE, nir2, g |
2016 | 4.0 | 9 | 54 | 4 | 0.85 | 0.67 | 19.0 | 19.9 | nir2 × NDRE, r × NDRE, c × re |
2017 | 4.0 | 9 | 54 | 4 | 0.80 | 0.78 | 17.2 | 27.4 | nir2 × NDRE, nir2, g |
2018 | 4.0 | 9 | 54 | 3 | 0.84 | 0.72 | 17.5 | 27.4 | nir2 × NDRE, NDRE, g |
Ref | Stage | Platform | Sensor | Model | Seasons | RMSE (kg/ha) Same Seasons | RMSE (kg/ha) Test Season |
---|---|---|---|---|---|---|---|
[54] | T, PI, H, F | Handheld | MS | VI | 2 | 7.07 | - |
[28] | PI | Handheld | HS | IPLSR | 4 | 11.7 | - |
[30] | PI | Handheld | HS | PLSR | 3 | 17.4 | 34.9 |
[27] | PI | UAV | MS | VI | 2 | 11.5 | - |
[29] | H | Airborne | HS | PLSR, MLR | 3 | 11.98 | 67.1 |
This | PI | Satellite | MS | MLR | 4 | 14.6 | 27.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkhoff, J.; Dunn, B.W.; Robson, A.J.; Dunn, T.S.; Dehaan, R.L. Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data. Remote Sens. 2019, 11, 1837. https://doi.org/10.3390/rs11151837
Brinkhoff J, Dunn BW, Robson AJ, Dunn TS, Dehaan RL. Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data. Remote Sensing. 2019; 11(15):1837. https://doi.org/10.3390/rs11151837
Chicago/Turabian StyleBrinkhoff, James, Brian W. Dunn, Andrew J. Robson, Tina S. Dunn, and Remy L. Dehaan. 2019. "Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data" Remote Sensing 11, no. 15: 1837. https://doi.org/10.3390/rs11151837
APA StyleBrinkhoff, J., Dunn, B. W., Robson, A. J., Dunn, T. S., & Dehaan, R. L. (2019). Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data. Remote Sensing, 11(15), 1837. https://doi.org/10.3390/rs11151837