Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling
"> Figure 1
<p>Geographical distribution of the selected 6 GNSS tracking stations.</p> "> Figure 2
<p>Clock offset in single-system and multi-GNSS models on BRUX using COD and GBM products.</p> "> Figure 3
<p>Clock offset in single-system and multi-GNSS models on HARB using COD and GBM products.</p> "> Figure 4
<p>The clock difference in single-system and multi-GNSS models on BRUX and NTSC using GBM and COD products.</p> "> Figure 5
<p>The clock difference in single-system and multi-GNSS models on HARB and NTSC using GBM and COD products.</p> "> Figure 6
<p>Number of satellites and time dilution of precision (TDOP) on BRUX.</p> "> Figure 7
<p>Number of satellite and TDOP on NTSC.</p> "> Figure 8
<p>Allan deviation of four time links using COD products with four models.</p> "> Figure 9
<p>Percentage improvement in the stability of multi-GNSS over the single-system using COD products.</p> "> Figure 10
<p>Allan deviation of four time links using GBM products with four models.</p> "> Figure 11
<p>Percentage improvement in stability of multi-GNSS over the single-system using GBM products.</p> "> Figure 12
<p>Clock differences of scheme1 and scheme2 with single-system and multi-GNSS models on BRUX-NTSC using COD products.</p> "> Figure 13
<p>Clock differences of scheme1 and scheme2 with single-system and multi-GNSS models on HARB-NTSC using COD products.</p> "> Figure 14
<p>Allan deviation of scheme1 and scheme2 on PT11-NTSC with single-system and multi-GNSS models using COD products.</p> "> Figure 15
<p>Allan deviation of scheme1 and scheme2 on HOB2-NTSC with single-system and multi-GNSS models using COD products.</p> "> Figure 16
<p>The improvement of scheme2 in stability, with respect to scheme1 on four time links with single-system and multi-GNSS models using COD products.</p> "> Figure 17
<p>Allan deviation of scheme1 and scheme2 on BRUX-NTSC with single-system and multi-GNSS models using COD products.</p> "> Figure 18
<p>Allan deviation of scheme1 and scheme2 on HARB-NTSC with single-system and multi-GNSS models using GBM products.</p> "> Figure 19
<p>The improvement of scheme2 in stability, with respect to scheme1 on four time links with single-system and multi-GNSS models using GBM products.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. The Ionosphere-Free PPP Model
2.2. Receiver Clock Estimation with the Between-Epoch Constraint Model
3. Experimental Data and Processing Strategies
4. Results
4.1. Multi-GNSS PPP Time Transfer with Different Precise Products
4.2. Multi-GNSS PPP Time Transfer with the Between-Epoch Constraint Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allan, D.W.; Weiss, M.A. Accurate time and frequency transfer during common-view of a GPS satellite. In Proceedings of the 1980 IEEE Frequency Control Symposium, Philadelphia, PA, USA, 28–30 May 1980; pp. 334–356. [Google Scholar]
- Nawrocki, J.; Lewandowski, W.; Nogaś, P.; Foks, A.; Lemański, D. An experiment of GPS+ GLONASS common-view time transfer using new multi-system receivers. In Proceedings of the 20th European Frequency and Time Forum, EFTF 2006, Braunschweig, Germany, 27–30 March 2006; pp. 904–909. [Google Scholar]
- Lee, S.W.; Schutz, B.E.; Lee, C.B.; Yang, S.H. A study on the Common-View and All-in-View GPS time transfer using carrier-phase measurements. Metrologia 2008, 45, 156–167. [Google Scholar] [CrossRef]
- Petit, G.; Jiang, Z. Precise Point Positioning for TAI Computation. Int. J. Navig. Obs. 2008, 2008, 1–8. [Google Scholar] [CrossRef]
- Petit, G. The TAIPPP pilot experiment. In Proceedings of the IEEE International Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time Forum, Besançon, France, 20–24 April 2009; pp. 116–119. [Google Scholar]
- Petit, G.; Kanj, A.; Loyer, S.; Delporte, J.; Mercier, F.; Perosanz, F. 1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia 2015, 52, 301–309. [Google Scholar] [CrossRef]
- Petit, G.; Leute, J.; Loyer, S.; Perosanz, F. Sub 10−16 frequency transfer with IPPP: Recent results. In Proceedings of the Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC), 2017 Joint Conference of the European, Besançon, France, 10–13 July 2017. [Google Scholar]
- Leute, J.; Petit, G.; Exertier, P.; Samain, E.; Rovera, D.; Uhrich, P. High accuracy continuous time transfer with GPS IPPP and T2L2. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Torino, Italy, 10–12 April 2018. [Google Scholar]
- Ge, Y.; Qin, W.; Cao, X.; Zhou, F.; Wang, S.; Yang, X. Consideration of GLONASS Inter-Frequency Code Biases in Precise Point Positioning (PPP) International Time Transfer. Appl. Sci. 2018, 8, 1254. [Google Scholar] [CrossRef]
- Guang, W.; Dong, S.; Wu, W.; Zhang, J.; Yuan, H.; Zhang, S. Progress of BeiDou time transfer at NTSC. Metrologia 2018, 55, 175–187. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, X.; Qin, W.; Su, H.; Wu, M.; Wang, Y.; Wang, S. Time Transfer Analysis of GPS- and BDS-Precise Point Positioning Based on iGMAS Products. China Satell. Navig. Conf. 2018, 497, 519–530. [Google Scholar]
- Tu, R.; Zhang, P.; Zhang, R.; Liu, J.; Lu, X. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations. J. Geod. 2018, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, R.; Gao, Y.; Liu, N.; Zhang, R. Improving Galileo’s Carrier-Phase Time Transfer Based on Prior Constraint Information. J. Navig. 2018, 72, 1–19. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, R.; Zhang, R.; Gao, Y.; Cai, H. Combining GPS, BeiDou, and Galileo Satellite Systems for Time and Frequency Transfer Based on Carrier Phase Observations. Remote Sens. 2018, 10, 324. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, F.; Liu, T.; Qin, W.; Wang, S.; Yang, X. Enhancing real-time precise point positioning time and frequency transfer with receiver clock modeling. GPS Solut. 2018. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, S.; Kuang, K.; Liu, T.; Gao, K. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning. Remote Sens. 2018, 10, 94. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Hutsell, S. Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation. In Proceedings of the 27th Annu PTTI Syst Applications Meeting, San Diego, CA, USA, 1–29 November 1995. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions; BUREAU INTERNATIONAL DES POIDS ET MESURES SEVRES (FRANCE): Paris, France, 2010. [Google Scholar]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orienation on GPS carrier phase. Manuscr. Geod. 1992, 18, 91–98. [Google Scholar]
- Harmegnies, A.; Defraigne, P.; Petit, G. Combining GPS and GLONASS in all-in-view for time transfer. Metrologia 2013, 50, 277–287. [Google Scholar] [CrossRef]
Station | Receiver | Antenna | Clock |
---|---|---|---|
NTSC | SEPT POLARX5TR | SEPCHOKE_MC | H-MASER |
BRUX | SEPT POLARX4TR | JAVRINGANT_DM | H-MASER |
PT11 | SEPT POLARX4TR | LEIAR25.R4 LEIT | H-MASER |
HOB2 | SEPT POLARX5 | AOAD/M_T | H-MASER |
USN8 | SEPT POLARX4TR | TPSCR.G5 | H-MASER |
HARB | TRIMBLE NETR9 | TRM59800.00 | CESIUM |
Item | Strategies |
---|---|
Observable | Ionosphere-free combination |
Satellite orbit and clock | GBM, COD |
Satellites | GPS, GLONASS, BDS, Galileo |
PCO/PCV | Corrected (igs14.atx) |
Tides | Corrected [21] |
Relativistic effect | Corrected [21] |
Sagnac effect | Corrected [21] |
Phase windup | Corrected [22] |
Troposphere | Estimated as a random walk process |
Ambiguity | Estimated as constant |
Elevation angle cutoff | 10° |
Station coordinate | Estimated as constant |
Receiver clock offset | Estimated with white noise model; Estimated with between-epoch constraint model |
Reference | IGS final receiver clock products |
ISB | Estimated as white noise |
GPS | (%) | BDS | (%) | Galileo | (%) | Multi | |
---|---|---|---|---|---|---|---|
BRUX-NTSC | 0.003 | 2.0 | 0.082 | 96.6 | 0.006 | 53.7 | 0.003 |
PT11-NTSC | 0.003 | 3.6 | 0.017 | 79.9 | 0.007 | 55.0 | 0.003 |
USN8-NTSC | 0.006 | 18.2 | 0.114 | 95.7 | 0.009 | 48.5 | 0.005 |
HARB-NTSC | 0.047 | 3.5 | 0.066 | 31.1 | 0.048 | 6.5 | 0.045 |
HOB2-NTSC | 0.090 | 1.2 | 0.091 | 2.2 | 0.091 | 1.6 | 0.089 |
GPS | (%) | BDS | (%) | Galileo | (%) | Multi | |
---|---|---|---|---|---|---|---|
BRUX-NTSC | 0.003 | 7.4 | 0.053 | 94.0 | 0.006 | 46.9 | 0.003 |
PT11-NTSC | 0.003 | 5.2 | 0.037 | 91.4 | 0.007 | 57.3 | 0.003 |
USN8-NTSC | 0.007 | 2.6 | 0.112 | 93.7 | 0.010 | 27.9 | 0.007 |
HARB-NTSC | 0.046 | 1.4 | 0.065 | 29.9 | 0.046 | 1.6 | 0.046 |
HOB2-NTSC | 0.091 | 1.4 | 0.097 | 7.6 | 0.091 | 0.9 | 0.090 |
Items | Description |
---|---|
scheme1 | PPP time and frequency transfer based on GBM and COD final products; receiver offset estimated with the white noise model. |
scheme2 | PPP time and frequency transfer based on GBM and COD final products; receiver offset estimated with the between-epoch constraint model. |
GPS | BDS | Galileo | Multi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | (%) | 1 | 2 | (%) | 1 | 2 | (%) | 1 | 2 | (%) | |
BRUX-NTSC | 0.003 | 0.002 | 41.9 | 0.082 | 0.060 | 26.0 | 0.006 | 0.005 | 24.2 | 0.003 | 0.002 | 15.0 |
PT11-NTSC | 0.003 | 0.002 | 45.3 | 0.017 | 0.010 | 39.3 | 0.007 | 0.006 | 22.9 | 0.003 | 0.003 | 20.4 |
USN8-NTSC | 0.006 | 0.004 | 36.5 | 0.114 | 0.080 | 30.1 | 0.009 | 0.007 | 30.7 | 0.005 | 0.003 | 46.9 |
HARB-NTSC | 0.047 | 0.004 | 92.2 | 0.066 | 0.058 | 11.8 | 0.048 | 0.045 | 6.6 | 0.045 | 0.004 | 90.9 |
HOB2-NTSC | 0.090 | 0.055 | 39.0 | 0.091 | 0.072 | 21.3 | 0.091 | 0.051 | 43.3 | 0.089 | 0.053 | 40.2 |
GPS | BDS | Galileo | Multi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | (%) | 1 | 2 | (%) | 1 | 2 | (%) | 1 | 2 | (%) | |
BRUX-NTSC | 0.003 | 0.002 | 42.4 | 0.053 | 0.041 | 23.0 | 0.006 | 0.004 | 33.2 | 0.003 | 0.002 | 30.3 |
PT11-NTSC | 0.003 | 0.002 | 37.8 | 0.037 | 0.026 | 27.7 | 0.007 | 0.005 | 29.0 | 0.003 | 0.002 | 26.6 |
USN8-NTSC | 0.007 | 0.005 | 24.0 | 0.112 | 0.038 | 65.8 | 0.010 | 0.006 | 39.3 | 0.007 | 0.005 | 26.8 |
HARB-NTSC | 0.046 | 0.004 | 91.9 | 0.065 | 0.058 | 10.5 | 0.046 | 0.045 | 2.7 | 0.046 | 0.006 | 86.0 |
HOB2-NTSC | 0.091 | 0.056 | 38.2 | 0.097 | 0.068 | 30.5 | 0.091 | 0.052 | 43.1 | 0.090 | 0.056 | 38.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Dai, P.; Qin, W.; Yang, X.; Zhou, F.; Wang, S.; Zhao, X. Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling. Remote Sens. 2019, 11, 347. https://doi.org/10.3390/rs11030347
Ge Y, Dai P, Qin W, Yang X, Zhou F, Wang S, Zhao X. Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling. Remote Sensing. 2019; 11(3):347. https://doi.org/10.3390/rs11030347
Chicago/Turabian StyleGe, Yulong, Peipei Dai, Weijin Qin, Xuhai Yang, Feng Zhou, Shengli Wang, and Xingwang Zhao. 2019. "Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling" Remote Sensing 11, no. 3: 347. https://doi.org/10.3390/rs11030347
APA StyleGe, Y., Dai, P., Qin, W., Yang, X., Zhou, F., Wang, S., & Zhao, X. (2019). Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling. Remote Sensing, 11(3), 347. https://doi.org/10.3390/rs11030347