Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data
"> Figure 1
<p>Both study areas were located in central Europe. The black rectangles indicate the locations and extents of the two study areas. The area in northern Germany east of <span class="html-italic">Lüneburg</span> (DE) was considerably larger than the one in northern Switzerland southeast of <span class="html-italic">Schaffhausen</span> (CH).</p> "> Figure 2
<p>Example of windthrown areas for the two study areas in Switzerland (<b>a</b>) and Germany (<b>b</b>). The yellow lines indicate the borders of the digitised windthrown area after comparing orthoimages from before and after the storm event. <span class="html-italic">Planet</span> and aerial images were used to digitise the windthrows in the study areas in Switzerland and Germany, respectively. For the German study area, the digitised windthrow, as shown in the image, belongs to the category ‘areal windthrow’. © Planet imagery/© Department of forestry of <span class="html-italic">Mecklenburg-Vorpommern</span>.</p> "> Figure 3
<p>Synthetic aperture radar (SAR) data processing scheme. For both study areas, acquisitions of both polarisations vertical-vertical (VV) and vertical-horizontal (VH) were processed, as displayed in the scheme. This processing scheme was followed to derive the <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </mrow> <mrow> <mrow> <mi>LRW</mi> </mrow> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> composites representing before and after the storm event.</p> "> Figure 4
<p>Image differencing and the subsequent calculation of statistics within the forest and windthrow reference masks. Both steps were performed for both VV and VH polarisations.</p> "> Figure 5
<p>Example of the functionality of the windthrow detection method. (<b>a</b>) True colour Planet image of the region with the borders of the digitised windthrown areas (yellow lines) and (<b>b</b>) windthrow index (WI) of the region in dB. (<b>c</b>) The result after the first branch in the decision tree with all potential windthrown areas in the forest. (<b>d</b>) The final result after application of the minimum size threshold. Only larger objects remain, leading to a more realistic representation of the windthrow in the forest. © Planet imagery/Contains modified Copernicus Sentinel data (2017).</p> "> Figure 6
<p>Decision tree with two branches to obtain the windthrown areas from the windthrow index. To detect the windthrows, the two parameters <b>a</b> and <b>n</b> need to be defined by the user.</p> "> Figure 7
<p>Scatterplots comparing pre- and post-storm backscatter. In the first row, (<b>a</b>,<b>b</b>) VV and VH backscatter are displayed from the mainly intact forest area. In the second row, (<b>c</b>,<b>d</b>) backscatter of the same polarisations are depicted from the windthrown areas. The number of pixels was considerably lower for (<b>c</b>,<b>d</b>). Contains modified Copernicus Sentinel data (2017).</p> "> Figure 7 Cont.
<p>Scatterplots comparing pre- and post-storm backscatter. In the first row, (<b>a</b>,<b>b</b>) VV and VH backscatter are displayed from the mainly intact forest area. In the second row, (<b>c</b>,<b>d</b>) backscatter of the same polarisations are depicted from the windthrown areas. The number of pixels was considerably lower for (<b>c</b>,<b>d</b>). Contains modified Copernicus Sentinel data (2017).</p> "> Figure 8
<p>Windthrow maps generated with different parameter combinations. The combinations used were (<b>a</b>) <b>n</b> = 15, <b>a</b> = 2.8, (<b>b</b>) <b>n</b> = 15, <b>a</b> = 2.9, (<b>c</b>) <b>n</b> = 25, <b>a</b> = 2.8, and (<b>d</b>) <b>n</b> = 27, <b>a</b> = 2.9, the best combination for the Swiss study area (CH). Both parameters strongly affected the number of suggested windthrows. © Planet imagery/Contains modified Copernicus Sentinel data (2017).</p> "> Figure 9
<p>Matrices of the performance measures (<b>a</b>) producer’s accuracy (PA) and (<b>b</b>) user’s accuracy (UA) for different combinations of the parameter <b>a</b> and <b>n</b> in the Swiss study area (CH). Higher PAs were reached with lower <b>a</b> and <b>n</b>, higher UAs with higher <b>a</b> and <b>n</b>. The red rectangles indicate the chosen parameter combination.</p> "> Figure 10
<p>Influence of the number of Sentinel-1 (S-1) acquisitions used in the local resolution weighting (LRW) processing for the windthrow map generation. The number of S-1 acquisitions after the storm event was gradually increased from one to ten for both study areas. The displayed map quality corresponds to the mean of PA and UA for each map. ‘asc’ and ‘des’ indicate the additional acquisition’s pass direction ascending and descending, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Swiss Study Area (SE of Schaffhausen, Switzerland): CH
2.1.2. German Study Area (East of Lüneburg, Germany): DE
2.2. Data
2.3. Methods
2.3.1. SAR Data Processing
2.3.2. Image Differencing & Calculation of Statistics
2.3.3. Detection Method
2.3.4. Influence of the Number of S-1 Acquisitions
3. Results
3.1. Statistics from Image Differencing
3.2. Parameter Combination Evaluation—Training of Method in Development Area
3.3. Method Evaluation in the German Validation Area Mecklenburg-Vorpommern
3.4. Influence of the Number of S-1 Acquisitions
4. Discussion
4.1. Diverging Backscatter Behaviour between Windthrown and Intact Forest Areas
4.2. Windthrow Maps
4.3. Influence of the Number of S-1 Acquisitions
4.4. Comparison with Existing Windthrow Detection Methods
4.5. Practical Use
4.6. Outlook
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SA | Pre/Post | Date | Copernicus Open Access Hub Identifier | Asc/Des |
---|---|---|---|---|
CH | pre | 20 July 2017 | S1B_IW_GRDH_1SDV_20170720T053411_20170720T053436_006567_00B8C9_0638 | des |
CH | pre | 22 July 2017 | S1A_IW_GRDH_1SDV_20170722T171516_20170722T171541_017587_01D6BC_2029 | asc |
CH | pre | 26 July 2017 | S1A_IW_GRDH_1SDV_20170726T053445_20170726T053510_017638_01D85F_736D | des |
CH | pre | 28 July 2017 | S1B_IW_GRDH_1SDV_20170728T171438_20170728T171503_006691_00BC4A_0F41 | asc |
CH | pre | 1 August 2017 | S1B_IW_GRDH_1SDV_20170801T053411_20170801T053436_006742_00BDCE_523B | des |
CH | post | 3 August 2017 | S1A_IW_GRDH_1SDV_20170803T171517_20170803T171542_017762_01DC14_352F | asc |
CH | post | 7 August 2017 | S1A_IW_GRDH_1SDV_20170807T053446_20170807T053511_017813_01DDB3_C117 | des |
CH | post | 9 August 2017 | S1B_IW_GRDH_1SDV_20170809T171439_20170809T171504_006866_00C15B_856D | asc |
CH | post | 13 August 2017 | S1B_IW_GRDH_1SDV_20170813T053412_20170813T053437_006917_00C2E7_8219 | des |
CH | post | 15 August 2017 | S1A_IW_GRDH_1SDV_20170815T171517_20170815T171542_017937_01E169_D0CF | asc |
CH | post | 19 August 2017 | S1A_IW_GRDH_1SDV_20170819T053446_20170819T053511_017988_01E302_08B5 | des |
CH | post | 21 August 2017 | S1B_IW_GRDH_1SDV_20170821T171439_20170821T171504_007041_00C672_489A | asc |
CH | post | 25 August 2017 | S1B_IW_GRDH_1SDV_20170825T053413_20170825T053438_007092_00C7F7_4EAB | des |
CH | post | 27 August 2017 | S1A_IW_GRDH_1SDV_20170827T171518_20170827T171543_018112_01E6B4_8BA5 | asc |
CH | post | 31 August 2017 | S1A_IW_GRDH_1SDV_20170831T053447_20170831T053512_018163_01E845_EBD7 | des |
DE | pre | 25 September 2017 | S1B_IW_GRDH_1SDV_20170925T052421_20170925T052446_007544_00D51A_43AE | des |
DE | pre | 28 September 2017 | S1B_IW_GRDH_1SDV_20170928T165954_20170928T170019_007595_00D689_FC15 | asc |
DE | pre | 30 September 2017 | S1B_IW_GRDH_1SDV_20170930T053234_20170930T053259_007617_00D737_E3E3 | des |
DE | pre | 1 October 2017 | S1A_IW_GRDH_1SDV_20171001T052455_20171001T052520_018615_01F62C_8AAB | des |
DE | pre | 4 October 2017 | S1A_IW_GRDH_1SDV_20171004T170038_20171004T170103_018666_01F7B5_BA85 | asc |
DE | post | 6 October 2017 | S1A_IW_GRDH_1SDV_20171006T053308_20171006T053333_018688_01F871_C8DA | des |
DE | post | 7 October 2017 | S1B_IW_GRDH_1SDV_20171007T052421_20171007T052446_007719_00DA22_3499 | des |
DE | post | 10 October 2017 | S1B_IW_GRDH_1SDV_20171010T165954_20171010T170019_007770_00DB8C_FCFD | asc |
DE | post | 12 October 2017 | S1B_IW_GRDH_1SDV_20171012T053234_20171012T053259_007792_00DC33_6B31 | des |
DE | post | 16 October 2017 | S1A_IW_GRDH_1SDV_20171016T170038_20171016T170103_018841_01FD0D_D8CC | asc |
DE | post | 18 October 2017 | S1A_IW_GRDH_1SDV_20171018T053308_20171018T053333_018863_01FDCC_6C39 | des |
DE | post | 19 October 2017 | S1B_IW_GRDH_1SDV_20171019T052421_20171019T052446_007894_00DF19_7084 | des |
DE | post | 24 October 2017 | S1B_IW_GRDH_1SDV_20171024T053234_20171024T053259_007967_00E134_627A | des |
DE | post | 25 October 2017 | S1A_IW_GRDH_1SDV_20171025T052455_20171025T052520_018965_0200D3_BC00 | des |
DE | post | 28 October 2017 | S1A_IW_GRDH_1SDV_20171028T170038_20171028T170103_019016_02025E_D4A5 | asc |
References
- McCarthy, J.K.; Hood, I.A.; Kimberley, M.O.; Didham, R.K.; Bakys, R.; Fleet, K.R.; Brownlie, R.K.; Flint, H.J.; Brockerhoff, E.G. Effects of season and region on sapstain and wood degrade following simulated storm damage in Pinus radiata plantations. For. Ecol. Manag. 2012, 277, 81–89. [Google Scholar] [CrossRef]
- Økland, B.; Berryman, A. Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus. Agric. For. Entomol. 2004, 6, 141–146. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manage. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Schwarz, M.; Steinmeier, C.; Holecz, F.; Stebler, O.; Wagner, H. Detection of Windthrow in Mountainous Regions with Different Remote Sensing Data and Classification Methods. Scand. J. For. Res. 2003, 18, 525–536. [Google Scholar] [CrossRef]
- Usbeck, T.; Wohlgemuth, T.; Dobbertin, M.; Pfister, C.; Bürgi, A.; Rebetez, M. Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric. For. Meteorol. 2010, 150, 47–55. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyukarev, E.A.; Pologova, N.N.; Golovatskaya, E.A.; Dyukarev, A.G. Forest cover disturbances in the South Taiga of West Siberia. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Jonikavičius, D.; Mozgeris, G. Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data. iForest 2013, 6, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Ozdogan, M.; Wolter, P.T.; Krylov, A.; Vladimirova, N.; Radeloff, V.C. Landsat remote sensing of forest windfall disturbance. Remote Sens. Environ. 2014, 143, 171–179. [Google Scholar] [CrossRef]
- Elatawneh, A.; Wallner, A.; Manakos, I.; Schneider, T.; Knoke, T. Forest cover database updates using multi-seasonal rapideye data-storm event assessment in the Bavarian Forest National Park. Forests 2014, 5, 1284–1303. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 2017, 8, 21. [Google Scholar] [CrossRef]
- Honkavaara, E.; Litkey, P.; Nurminen, K. Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery. Remote Sens. 2013, 5, 1405–1424. [Google Scholar] [CrossRef]
- Mokroš, M.; Výbošt’ok, J.; Merganič, J.; Hollaus, M.; Barton, I.; Koreň, M.; Tomaštík, J.; Čerňava, J. Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests 2017, 8, 306. [Google Scholar] [CrossRef]
- Duan, F.; Wan, Y.; Deng, L. A novel approach for coarse-to-fine windthrown tree extraction based on unmanned aerial vehicle images. Remote Sens. 2017, 9, 306. [Google Scholar] [CrossRef]
- Nyström, M.; Holmgren, J.; Fransson, J.E.S.; Olsson, H. Detection of windthrown trees using airborne laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 21–29. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Learning a constrained conditional random field for enhanced segmentation of fallen trees in ALS point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 140, 33–44. [Google Scholar] [CrossRef]
- Kellndorfer, J.M.; Pierce, L.E.; Dobson, M.C.; Ulaby, F.T. Toward consistent regional-to-global-scale vegetation characterization using orbital SAR systems. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1396–1411. [Google Scholar] [CrossRef]
- Solimini, D. Understanding Earth Observation; Springer International Publishing: Basel, Switzerland, 2016; pp. 1–703. ISBN 978-3-319-25633-7. [Google Scholar]
- Leckie, D.G.; Ranson, K.J. Forestry Applications Using Imaging Radar. In Manual of Remote Sensing: Principles and Applications of Imaging Radar, 3rd ed.; Henderson, F.M., Lewis, A.J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; pp. 435–510. ISBN 978-0471294061. [Google Scholar]
- Way, J.; Parist, J.; Kasischke, E.; Slaughter, C.; Viereck, L.; Christensen, N.; Dobson, M.C.; Ulaby, F.; Richards, J.; Milne, A.; et al. The effect of changing environmental conditions on microwave signatures of forest ecosystems: Preliminary results of the March 1988 Alaskan aircraft SAR experiment. Int. J. Remote Sens. 1990, 11, 1119–1144. [Google Scholar] [CrossRef]
- Wegmüller, U.; Holecz, F.; Wan, Y.; Kattenborn, G. Theoretical sensitivity of ERS-1 SAR backscatter over forest. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, CA, USA, 8–12 August 1994; pp. 2477–2479. [Google Scholar]
- Proisy, C.; Mougin, E.; Dufrêne, E.; Le Dantec, V. Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations. IEEE Trans. Geosci. Remote Sens. 2000, 38, 540–552. [Google Scholar] [CrossRef]
- Sharma, R.; Leckie, D.; Hill, D.; Crooks, B.; Bhogal, A.S.; Arbour, P.; D’eon, S. Hyper-Temporal Radarsat SAR data of a Forested Terrain. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MA, USA, 16–18 May 2005; pp. 71–75. [Google Scholar]
- Koskinen, J.T.; Pulliainen, J.T.; Hallikainen, M.T. The Use of ERS-1 SAR Data in Snow Melt Monitoring. IEEE Trans. Geosci. Remote Sens. 1997, 35, 601–610. [Google Scholar] [CrossRef]
- Westman, W.E.; Paris, J.F. Detecting forest structure and biomass with C-band multipolarization Radar: Physical model and field tests. Remote Sens. Environ. 1987, 22, 249–269. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; LeToan, T.; Beaudoin, A.; Kasischke, E.S.; Christensen, N. Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens. 1992, 30, 412–415. [Google Scholar] [CrossRef]
- Imhoff, M.L. A Theoretical Analysis of the Effect of Forest Structure on Synthetic Aperture Radar Backscatter and the Remote Sensing of Biomass. IEEE Trans. Geosci. Remote Sens. 1995, 33, 341–352. [Google Scholar] [CrossRef]
- Ahern, F.J.; Leckie, D.J.; Drieman, J.A. Seasonal changes in relative C-band backscatter of northern forest cover types. IEEE Trans. Geosci. Remote Sens. 1993, 31, 668–680. [Google Scholar] [CrossRef]
- Rüetschi, M.; Schaepman, M.E.; Small, D. Using multitemporal Sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern Switzerland. Remote Sens. 2018, 10, 55. [Google Scholar] [CrossRef]
- Green, R.M. The sensitivity of SAR backscatter to forest windthrow gaps. Int. J. Remote Sens. 1998, 19, 2419–2425. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Walter, F.; Blennow, K.; Gustavsson, A.; Ulander, L.M.H. Detection of storm-damaged forested areas using airborne CARABAS-II VHF SAR image data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2170–2175. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.E.B.; Fransson, J.E.S.; Soja, M.J.; Santoro, M. Backscatter signatures of wind-thrown forest in satellite SAR images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 6435–6438. [Google Scholar]
- Thiele, A.; Boldt, M.; Hinz, S. Automated detection of storm damage in forest areas by analyzing TerraSAR-X data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 1672–1675. [Google Scholar]
- Ulander, L.M.H.; Smith, G.; Eriksson, L.; Folkesson, K.; Fransson, J.E.S.; Gustavsson, A.; Hallberg, B.; Joyce, S.; Magnusson, M.; Olsson, H.; et al. Mapping of wind-thrown forests in southern Sweden using space- and airborne SAR. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, South Korea, 25–29 July 2005; pp. 3619–3622. [Google Scholar]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.Ö.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Swiss Severe Weather Database 20170802 01 Downburst Nordschweiz. Available online: http://www. sturmarchiv.ch/index.php?title=20170802_01_Downburst_Nordschweiz (accessed on 3 November 2018).
- German Weather Service Sturmtief XAVIER zieht am 5. Oktober 2017 mit Orkanböen über Deutschland. Available online: https://www.dwd.de/DE/leistungen/besondereereignisse/stuerme/20171009_sturmtief _xavier_deutschland.pdf?__blob=publicationFile&v=4 (accessed on 3 November 2018).
- Schubert, A.; Miranda, N.; Geudtner, D.; Small, D. Sentinel-1A/B Combined Product Geolocation Accuracy. Remote Sens. 2017, 9, 607. [Google Scholar] [CrossRef]
- Federal Office of Topography Swisstopo swissALTI3D. Available online: https://www.swisstopo.admin. ch/content/swisstopo-internet/de/home/products/height/alti3d/_jcr_content/contentPar/tabs/items/dokmente/tabPar/downloadlist/downloadItems/846_1464690554132.download/swissALTI3D_detaillierteProduktinfo_201802_DE.pdf (accessed on 12 October 2018).
- Copernicus EU-DEM v1.1. Available online: https://land.copernicus.eu/pan-european/satellite-derived- products/eu-dem/eu-dem-v1.1/view (accessed on 2 November 2018).
- Planet. Planet Imagery Product Specifications. Available online: https://www.planet.com/products/ satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf (accessed on 3 November 2018).
- GDAL Geospatial Data Abstraction Library. Available online: http://www.gdal.org (accessed on 7 October 2018).
- Ginzler, C.; Hobi, M.L. Countrywide stereo-image matching for updating digital surface models in the framework of the swiss national forest inventory. Remote Sens. 2015, 7, 4343–4370. [Google Scholar] [CrossRef]
- Small, D. Flattening Gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Small, D. SAR backscatter multitemporal compositing via local resolution weighting. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4521–4524. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2003, 25, 2365–2401. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Waser, L.T.; Fischer, C.; Wang, Z.; Ginzler, C. Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests 2015, 6, 4510–4528. [Google Scholar] [CrossRef]
- ESA Revisit and Coverage. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1- sar/revisit-and-coverage (accessed on 14 October 2018).
- Dabboor, M.; Iris, S.; Singhroy, V. The RADARSAT Constellation Mission in Support of Environmental Applications. Proceedings 2018, 2, 323. [Google Scholar] [CrossRef]
ex (ha) | n |
---|---|
0.51–1 | 12 |
1–1.5 | 4 |
1.5–2 | 2 |
2–2.5 | 5 |
2.5–3 | 2 |
3–3.07 | 1 |
All | 26 |
‘Single Windthrown Trees’ | ‘Single Standing Trees’ | ‘Areal Windthrow’ | All | |||
---|---|---|---|---|---|---|
ex (ha) | n | ex (ha) | n | ex (ha) | n | n |
0.5–1 | 117 | 0.54–1 | 13 | 0.51–1 | 4 | 134 |
1–1.5 | 46 | 1–1.32 | 4 | 1–1.5 | 1 | 51 |
1.5–2 | 18 | 1.5–2 | 0 | 1.5–2 | 1 | 19 |
2–2.5 | 11 | 2–2.5 | 0 | 2–2.5 | 1 | 12 |
2.5–3 | 8 | 2.5–3 | 0 | 2.5–3 | 0 | 8 |
3–13.49 | 25 | 3–3.5 | 0 | 3–3.37 | 1 | 26 |
All | 225 | All | 17 | All | 8 | 250 |
Polarisation | Within Whole Forest Mask | Within Windthrow Reference Mask | ||||
---|---|---|---|---|---|---|
n | mn (dB) | sd (dB) | n | mn (dB) | sd (dB) | |
VV | 80354 | 0.05 | 1.58 | 4101 | 0.5 | 1.78 |
VH | 0.31 | 1.6 | 0.97 | 1.81 |
‘Areal Windthrow’ | ‘Single Standing Trees’ | ‘Single Windthrown Trees’ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Product | Reference | Product | Reference | Product | ||||||
w | nw | PA | w | nw | PA | w | nw | PA | |||
w | 7 | 1 | 0.88 | w | 5 | 12 | 0.29 | w | 16 | 209 | 0.07 |
nw | 26 | - | nw | 28 | - | nw | 17 | - | |||
UA | 0.21 | UA | 0.15 | UA | 0.48 |
Remote Sensing System | Latency | Cost | Areal Coverage | Examples |
---|---|---|---|---|
Airborne optical | short-long * | high | small | [12,13,14] |
Airborne ALS | short-long * | high | small | [15,16] |
Airborne SAR | short-long * | high | small | [30,31] |
Spaceborne optical | short-long * | low-medium ** | large | [7,8,9,10,11] |
Spaceborne exact repeat track SAR | medium | low-medium ** | large | [32,33,34,35] |
Spaceborne LRW SAR (multi-track) | short | low-medium ** | large | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rüetschi, M.; Small, D.; Waser, L.T. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115. https://doi.org/10.3390/rs11020115
Rüetschi M, Small D, Waser LT. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sensing. 2019; 11(2):115. https://doi.org/10.3390/rs11020115
Chicago/Turabian StyleRüetschi, Marius, David Small, and Lars T. Waser. 2019. "Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data" Remote Sensing 11, no. 2: 115. https://doi.org/10.3390/rs11020115
APA StyleRüetschi, M., Small, D., & Waser, L. T. (2019). Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sensing, 11(2), 115. https://doi.org/10.3390/rs11020115