Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau
<p>Geographical settings of the Amu Darya, Tarim, Indus, Ganges, Brahmaputra, Salween, Mekong, Yangtze, Yellow rivers, and Hindu Kush-Himalaya-Tibetan (HKHT) Interior (also known as Tibetan Plateau Interior). The blue, orange, and black arrows depict that climate change in the HKHT regions was revealed by three distinct patterns: (1) Amu Darya, Indus, northern part of Ganges, and western part of Tarim associated with the impact of the westerlies, (2) Brahmaputra, Salween, and southern part of Ganges controlled by the Indian summer monsoon (ISM), and (3) Mekong, Yangtze, Yellow, and most part of the HKHT Interior resulted from the mix of ISM and Eastern Asian monsoon (EAM).</p> "> Figure 2
<p>Stacked bar graph of the number of Landsat images used for each year by image data sources.</p> "> Figure 3
<p>A representative example of lake gap-fill results, using Landsat ETM+ bands 3, 2, 1.</p> "> Figure 4
<p>Lake fluctuation history over the period 1975–2015 showing an annual lake fluctuation observed from remote sensing for the corresponding large river basins. No satellite imagery is available for the period 1976–1988 and this gap is represented by dash line.</p> "> Figure 5
<p>Lake density variation across the HKHT regions for the three important milestone years 1975 (initial status with 44,688 lakes with a total area of 43,006 km<sup>2</sup>), 1996 (the inflection point from lake shrinking to lake expansion with 38,311 lakes with a total area of 38,472 km<sup>2</sup>) and 2015 (present status with 84,855 lakes with a total area of 52,846 km<sup>2</sup>).</p> "> Figure 6
<p>Comparisons of lake fluctuations in lake shrinking period between the 1970s and 1995. The bottom figure shows that lake shrinking primarily occurred in the Himalayan Interior, Yangtze and Yellow basins, whereas lake expansions were often observed in the areas affected by the westerlies and glaciers (top figure).</p> "> Figure 7
<p>Comparisons of lake fluctuations in lake expansion period between 1996 and 2015. The top figure shows that lake expansion is a common phenomenon in almost all the HKHT regions, and area decreasing for most of the shrunk lakes is not evident (bottom figure).</p> "> Figure 8
<p>Precipitation trend analysis using Mann-Kendall test in lake shrinking period from the 1970s to 1995 (the top figure), and lake expansion period from 1996 to 2015 (the bottom figure).</p> "> Figure 9
<p>The 100% stacked column charts of relative abundances of lakes in different elevation ranges and the line charts of year-by-year variations in average lake surface elevation in the HKHT Interior and the upper reaches of the nine Asian rivers.</p> "> Figure 10
<p>Recent changes in relative glacier melt contribution (GMC) to lake water balance in the HKHT Interior and the upstream areas of the nine Asian rivers.</p> "> Figure 11
<p>Deviation area index (DAI) distribution against lake surface area delineated in high resolution images, which converges toward zero as the lake surface area increases.</p> "> Figure 12
<p>Squared correlation coefficients (<math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> </semantics></math>) of predicting annual lake runoff for each of the ten river basins based on cross validation. Box plot shows the range of 25–75% quantiles for R<sup>2</sup> distribution for each regression model.</p> ">
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets and Data Processing
2.2. Lake Delineation
2.3. Estimating Annual Glacier Melt Contribution
3. Results
3.1. Lake Fluctuation History
3.2. Possible Causes of Lake Fluctuation
3.3. Impact of Glacier Melt on Lake Fluctuations
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. IPCC, Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.F.; Shen, Y.P.; Kang, E.; Li, D.L.; Ding, Y.J.; Zhang, G.W.; Hu, R.J. Recent and future climate change in northwest china. Climat. Chang. E 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Ji, J.F.; Shen, J.; Balsam, W.; Chen, J.; Liu, L.W.; Liu, X.Q. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth. Planet. Sc. Lett 2005, 233, 61–70. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Kohler, T.; Pratt, J.; Debarbieux, B.; Balsiger, J.; Rudaz, G.; Maselli, D. Sustainable Mountain Development, Green Economy and Institutions. From Rio 1992 to Rio 2012 and Beyond; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2012. [Google Scholar]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Henry, F.D., Martin, G., Lisa, J.G., Eds.; Springer: Berlin, Germany, 2003; pp. 5–31. [Google Scholar]
- Yao, T.; Wang, Y.; Liu, S.; Pu, J.; Shen, Y.; Lu, A. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Sci. China Seri. D: Earth Sci. 2004, 47, 1065–1075. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 1–18. [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quatern. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef]
- Song, C.Q.; Huang, B.; Ke, L.H. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yang, K.; Wang, B.; Sheng, Y.W.; Bird, B.W.; Zhang, G.Q.; Tian, L.D. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climat. Change. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, WR015846. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet. Change 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Rathore, B.; Singh, S.; Bahuguna, I. Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int. J. Remote. Sens. 2011, 32, 601–615. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of climate change on Tibetan lakes: Patterns and processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Mergili, M.; Müller, J.P.; Schneider, J.F. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Global Planet. Change 2013, 107, 13–24. [Google Scholar] [CrossRef]
- Yang, X.K.; Lu, X.X. Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Zhang, K.X.; Zhu, F.J. Lakes’ state and abundance across the Tibetan Plateau. Chinese. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- NASA. Landsat 7 Science Data Users Handbook. 2011. Available online: https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat7_Handbook.pdf (accessed on 7 May 2019).
- MWR. Standard of the People’s Republic of China: Code for China Lake Name; China Water Power Press: Beijing, China, 1998. [Google Scholar]
- Wang, S.; Dou, H. Chinese Lake Catalogue; Science Press: Beijing, China, 1998; p. 580. [Google Scholar]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. B. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- GLIMS, NSIDC. GLIMS Glacier Database, Version 1. Available online: https://nsidc.org/data/NSIDC-0272 (accessed on 7 May 2019).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Minder, J.R.; Mote, P.W.; Lundquist, J.D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res.: Atmos. 2010, 115, D14122. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. Support vector machines for classification in remote sensing. Int. J. Remote. Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. Isprs, J. Photogramm. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany; 2006. [Google Scholar]
- Yang, X.K.; Lu, X.X. Delineation of lakes and reservoirs in large river basins: An example of the Yangtze River Basin, China. Geomorphology 2013, 190, 92–102. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SLC Gap-Filled Products Phase One Methodology; Geological Survey: Bassett, VA, USA, 2004.
- Lehner, B.; Liermann, C.R.; Revenga, C.; Voeroesmarty, C.; Fekete, B.; Crouzcet, P.; Doell, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecology Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Math. Phys. Eng. Sci. 1948, 193, 120–146. [Google Scholar]
- Blöschl, G. Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013; p. 490. [Google Scholar]
- Driver, N.E.; Troutman, B.M. Regression models for estimating urban storm-runoff quality and quantity in the United States. J. Hydrol. 1989, 109, 221–236. [Google Scholar] [CrossRef]
- Vogel, R.M.; Wilson, I.; Daly, C. Regional regression models of annual streamflow for the United States. J. Irrigation Drain. Eng. 1999, 125, 148–157. [Google Scholar] [CrossRef]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Jones, K.B. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds; Springer: Berlin, Germany, 2000; pp. 285–298. [Google Scholar]
- Palazzi, E.; Hardenberg, J.; Provenzale, A. Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos. 2013, 118, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, J.; Song, C.; He, Y.; Niu, B.; Fu, G.; et al. Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sens. 2019, 11, 360. [Google Scholar] [CrossRef]
- Singh, S.P.; Bassignana-Khadka, I.; Karky, B.S.; Sharma, E. Climate Change in the Hindu Kush-Himalayas: The State of Current Knowledge; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2011; p. 102. [Google Scholar]
- Laghari, J.R. Climate change: Melting glaciers bring energy uncertainty. Nature 2013, 503, 464. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.; Owen, L. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: Review and speculative discussion. J. Geol. Soc. London. 1998, 155, 353–363. [Google Scholar] [CrossRef]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the ’elevation effect,’ Karakoram Himalaya. Mount. Res. Develop. 2005, 25, 332–340. [Google Scholar] [CrossRef]
- Immerzeel, W. Historical trends and future predictions of climate variability in the Brahmaputra basin. Int. J. Climatol. 2008, 28, 243. [Google Scholar] [CrossRef]
- Lutz, A.; Immerzeel, W.; Shrestha, A.; Bierkens, M. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Anders, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial patterns of precipitation and topography in the Himalaya. Geolog. Soc. Am. Special Papers 2006, 398, 39–53. [Google Scholar]
- Hudson, A.M.; Quade, J. Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau. Geology 2013, 41, 351–354. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Watersheds of the World. Available online: https://www.wri.org/publication/watersheds-world (accessed on 7 May 2019).
- Xu, J.; Arun, S.; Rameshananda, V.; Mats, E.; Kenneth, H. The Melting Himalayas; International Center for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2007. [Google Scholar]
- Kaser, G.; Grosshauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.G.; Tang, W.J.; Chen, Y.Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhu, L.P. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000. J. Geograph. Sci. 2008, 18, 177–189. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.J.; Webster, P.J.; Yim, S.Y.; Xiang, B.Q. Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar] [CrossRef]
- Savoskul, O.S.; Smakhtin, V. Glacier Systems and Seasonal Snow Cover in Six Major Asian River Basins: Hydrological Role Under Changing Climate; International Water Management Institude (IWMI): Colombo, Sri Lanka, 2013; p. 45. [Google Scholar]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Fowler, H.; Archer, D. Conflicting signals of climatic change in the Upper Indus Basin. J. Climate 2006, 19, 4276–4293. [Google Scholar] [CrossRef]
- Young, G.; Hewitt, K. Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. Hydrol. Mount. Areas. IAHS Publ. 1990, 190, 139–152. [Google Scholar]
- Liu, J.; Kang, S.; Gong, T.; Lu, A. Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet. Hydrol. Earth Sys. Sci. 2010, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
Definition | Variable Name | Unit | Data Source |
---|---|---|---|
Climatic variables a | |||
Mean annual precipitation Monthly precipitation | P P(Jan) | mm yr−1 mm yr−1 | Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset [27] for 1975–2015. |
Annual rainfall during monsoon season | PM | mm yr−1 | APHRODITE dataset for 1975–2015. |
Mean annual land evapotranspiration | ET | inches yr−1 | Global Land Data Assimilation System product, GLDAS_NOAH025_M dataset (http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas) |
Mean annual temperature | T | F° * 10 | APHRODITE dataset [27] for 1975–2015. |
Mean max annual temperature | Tmax | F° * 10 | APHRODITE dataset [27] for 1975–2015. |
Mean monthly temperature | T(Jan) | F° * 10 | APHRODITE dataset [27] for 1975–2015. |
Mean max monthly temperature | Tmax(Jan) | F° * 10 | APHRODITE dataset [27] for 1975–2015. |
Snow | Snow | cm | Annual snowfall, (APHRODITE) dataset [27] for 1975–2015. |
Solar radiation | SR | mm yr−1 | GLDAS/Noah LSM Level 4 product (GLDAS_NOAH025_M) (http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas) |
Soil moisture | SM | kg m−2 | GLDAS_NOAH025_M dataset (http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas) |
Physical variables | |||
Snow cover extent | SA | km2 | Image classification results, derived from Landsat images provided by the USGS Earth Resources Observation and Science (EROS) archive [28] |
Bare land area | BA | km2 | Image classification results derived from Landsat images provided by EROS archive [28] |
Meadowland area | MA | km2 | Image classification results derived from Landsat images provided by EROS archive [28] |
River/stream surface area | WA | km2 | Image classification results derived from Landsat images provided by EROS archive [28] |
Agricultural area (cropland) | AA | km2 | Image classification results derived from Landsat images provided by EROS archive [28] |
Glaciered area | GA | km2 | GLIMS dataset [29] |
GeomorphicVariables | |||
Catchment area | CA | km2 | Derived from DEM data Shuttle Radar Topography Mission (SRTM) DEM data c [30] |
Catchment relief | CR | m | Derived from SRTM DEM data [30] |
Flow length | L | km | Derived from SRTM DEM data [30] |
Mean catchment elevation | H | m | Derived from SRTM DEM data [30] |
Average catchment slope | S | Degree | Derived from SRTM DEM data [30] |
Drainage density | DD | km km−2 | Derived from SRTM DEM data [30] |
Catchment wetness index b | CW | -- | Derived from SRTM DEM data [30] |
Stream gradient | SG | m km−1 | Derived from SRTM DEM data [30] |
River Basin Characteristics | GMC to Annual Lake Flow (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Basin | Basin Area (km2) | Upstream Area (km2) | Annual Flow(m3/s) | No. of Glaciers | Glaciated Area (%) | 1975–1990 | 1991–2000 | 2001–2015 | |
Affected by westerlies | Amu Darya | 534,739 | 393,558 | 2,123 | 7,804 | 1.7 | 27.0 | 26.5 | 33.3 |
Indus | 1,081,718 | 499,244 | 5,533 | 10,867 | 2.6 | 19.5 | 17.3 | 24.6 | |
Tarim | 1,152,448 | 303,410 | 146 | 11,732 | 5.7 | 34.2 | 37.0 | 38.1 | |
Affected by ISM | Ganges | 1,016,124 | 235,940 | 18,691 | 6881 | 1.2 | 4.2 | 4.9 | 5.4 |
Brahmaputra | 651,335 | 398,238 | 19,824 | 11,527 | 2.7 | 5.2 | 5.4 | 5.6 | |
Salween | 271,914 | 108,070 | 1,494 | 2,100 | 1.5 | 3.6 | 4.2 | 4.4 | |
Affected by EAM | Mekong | 805,604 | 83,959 | 11,048 | 393 | ~0.01 | 0.59 | 0.6 | 0.8 |
Yangtze | 1,722,193 | 468,266 | 34,000 | 1,378 | 0.1 | 1.9 | 2.0 | 2.3 | |
Yellow | 944,970 | 213,840 | 1,365 | 129 | ~0.02 | 0.3 | 0.4 | 0.4 | |
HKHT Interior | 986,612 | 986,612 | n/a | 6,014 | 0.7 | 3.3 | 3.9 | 4.1 |
Region | β0 | β1 | β2 | β3 | β4 | β5 | R2 |
---|---|---|---|---|---|---|---|
Amu Darya | — | CA 0.9861 | ET(June) −1.3177 | P(Jan) 1.5988 | P(July) 0.1885 | T −0.9632 | 0.6244 |
Indus | 5.103 | CA 0.9967 | P 0.9945 | P(Jan) 0.7732 | Tmax −2.6723 | — | 0.6728 |
Tarim | −25.761 | CA 0.8861 | P 2.2365 | CR 1.4141 | — | — | 0.6613 |
Ganges | −11.7978 | CA 0.9571 | P(Nov) 0.7742 | S 0.5082 | P(Sept) 1.3205 | — | 0.6014 |
Brahmaputra | −15.481 | CA 0.9908 | P 1.7739 | S 0.3527 | — | — | 0.6618 |
Salween | 7.8715 | CA 0.9825 | Tmax −2.7132 | P(Aug) 0.8242 | P(May) 0.9432 | — | 0.4532 |
Mekong | −27.761 | CA 0.8861 | P 2.2489 | H 1.1841 | — | — | 0.5119 |
Yangtze | −9.855 | CA 0.9723 | P 2.0732 | ET −0.759 | Snow 0.0399 | P(July) 0.2156 | 0.7154 |
Yellow | −6.088 | CA 0.9802 | P 1.9547 | T −1.1213 | — | — | 0.6234 |
HKHT Interior | 3.559 | CA 0.9627 | P 1.7746 | Tmax(June) −2.4196 | — | — | 0.7428 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Lu, X.; Park, E.; Tarolli, P. Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau. Remote Sens. 2019, 11, 1082. https://doi.org/10.3390/rs11091082
Yang X, Lu X, Park E, Tarolli P. Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau. Remote Sensing. 2019; 11(9):1082. https://doi.org/10.3390/rs11091082
Chicago/Turabian StyleYang, Xiankun, Xixi Lu, Edward Park, and Paolo Tarolli. 2019. "Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau" Remote Sensing 11, no. 9: 1082. https://doi.org/10.3390/rs11091082
APA StyleYang, X., Lu, X., Park, E., & Tarolli, P. (2019). Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau. Remote Sensing, 11(9), 1082. https://doi.org/10.3390/rs11091082