VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP
<p>Average monthly composite and annual composite lights for states (2016) (<b>a</b>) and MSAs (2016) (<b>b</b>).</p> "> Figure 2
<p>State lights (average monthly composites) and GDP annual (2016) (<b>a</b>) and 2-year growth (2014–2016) (<b>b</b>) data.</p> "> Figure 3
<p>MSA lights (average monthly composites) and GDP annual data (2016) (<b>a</b>) and for 2-year growth (2014–2016) (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature and Background
2.2. Data and Methods
3. Results
4. Discussion and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Elvidge, C.D.; Hsu, F.C.; Baugh, K.E.; Ghosh, T. National trends in satellite-observed lighting. In Global Urban Monitoring and Assessment through Earth Observation; CRC Press: London, UK, 2014; Volume 23, pp. 97–118. [Google Scholar]
- DMSP-OLS Nighttime Lights Time Series (Version 4); Image and data processing by NOAA’s National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency. Available online: https://ngdc.noaa.gov/eog/index.html (accessed on 1 March 2019).
- VIIRS Day/Night Band Nighttime Lights (Version 1); The Earth Observation Group, NOAA National Centers for Environmental Information (NCEI).
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.C.; Baugh, K.E.; Ghosh, T. Lighting tracks transition in Eastern Europe. In Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer: Cham, Switzerland, 2016; pp. 35–56. [Google Scholar]
- Doll, C.H.; Muller, J.P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, V.; Adam, S.; David, N.W. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Henderson, V.; Storeygard, A.; Weil, D.N. A bright idea for measuring economic growth. Am. Econ. Rev. 2011, 101, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Chen, X.; William, N. A test of the new VIIRS lights data set: Population and economic output in Africa. Remote Sens. 2015, 7, 4937–4947. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Nordhaus, W.; Xi, C. A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J. Econ. Geogr. 2015, 15, 217–246. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP day-night band and DMSP-OLS for correlating socio-economic variables at the provincial level in China. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, Y.; Zhao, G. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels. Sustainability 2017, 9, 305. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of china at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, N.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2013, 109, 15706–15711. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Kimberly, B.; Mikhail, Z.; Feng, C.H.; Tilottama, G. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Stephanie, W.; Calvin, L. VIIRS day/night band (DNB) stray light characterization and correction. In Earth Observing Systems XVIII; International Society for Optics and Photonics: San Diego, CA, USA, 2013; Volume 8866. [Google Scholar]
- Fotheringham, A.S.; Wong, D.W. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
Log(GDP) | Log(GDPt+1/GDPt) | Log(GDP2016/GDP2014) | Log(GDP) | Log(GDP2016/GDP2015) | |
---|---|---|---|---|---|
Independent variable | Average monthly composite lights | Annual composite lights | |||
Log(light) | 0.843 *** | 0.872 *** | |||
(0.055) | (0.055) | ||||
Log(lightt+1/lightt) | 0.038 * | 0.031 | |||
(0.018) | (0.021) | ||||
Log(light2016/light2014) | 0.125 ** | ||||
(0.037) | |||||
Year 2015 | 0.087 | ||||
(0.129) | |||||
Year 2016 | 0.144 | −0.009 *** | 0.070 | ||
(0.129) | (0.003) | (0.112) | |||
Constant | 0.719 | 0.025 *** | 0.052 *** | 0.555 | 0.016 *** |
(0.751) | (0.002) | (0.006) | (0.739) | (0.002) | |
N | 150 | 100 | 50 | 102 | 51 |
adj. R-sq | 0.610 | 0.128 | 0.180 | 0.709 | 0.023 |
SER | 0.4173 | 0.0002 | 0.0004 | 0.3181 | 0.0002 |
Log(GDP) | Log(GDPt+1/GDPt) | Log(GDP2016/GDP2014) | Log(GDP) | Log(GDP2016/GDP2015) | ||
---|---|---|---|---|---|---|
All MSAs | MSAs in CA, TX, NY, MI, FL | |||||
Independent variable | Average monthly composites lights | Annual composites lights | ||||
Log(light) | 1.132 *** | 1.073 *** | ||||
0.012 | 0.014 | |||||
Log(lightt+1/lightt) | 0.031 ** | 0.045 *** | ||||
0.011 | 0.012 | |||||
Log(light2016/light2014) | 0.077 ** | 0.222 *** | ||||
0.025 | 0.045 | |||||
2015 | 0.0801 ** | |||||
0.030 | ||||||
2016 | 0.131 *** | −0.007 *** | 0.080 * | |||
0.030 | 0.002 | 0.031 | ||||
CONSTANT | −2.983 *** | 0.020 *** | 0.038 *** | −2.116 *** | 0.016 *** | |
0.132 | 0.001 | 0.003 | 0.005 | 0.157 | 0.001 | |
N | 1143 | 762 | 381 | 98 | 762 | 381 |
adj. R-sq | 0.887 | 0.022 | 0.022 | 0.197 | 0.879 | 0.032 |
SER | 0.1731 | 0.0006 | 0.0019 | 0.0013 | 0.1840 | 0.0005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. https://doi.org/10.3390/rs11091057
Chen X, Nordhaus WD. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sensing. 2019; 11(9):1057. https://doi.org/10.3390/rs11091057
Chicago/Turabian StyleChen, Xi, and William D. Nordhaus. 2019. "VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP" Remote Sensing 11, no. 9: 1057. https://doi.org/10.3390/rs11091057
APA StyleChen, X., & Nordhaus, W. D. (2019). VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sensing, 11(9), 1057. https://doi.org/10.3390/rs11091057