Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach
<p>The three-level GSinGrid tiles used to store the multi-temporal images of China. The study area was hierarchically tiled into 19 standard MODIS level-1 land tiles (red), approximately 550 GWELD level-2 tiles (cyan) and 305,000 GSinGrid tiles (yellow), respectively.</p> "> Figure 2
<p>The locations and frequency distributions of Landsat WRS-2 scenes (shown in the geographical projection) and corresponding GSinGrid tiles (shown in the sinusoidal projection) (<b>a</b>,<b>b</b>).</p> "> Figure 3
<p>The spatial distributions of the validation samples.</p> "> Figure 4
<p>The flowchart of the multi-temporal classification method.</p> "> Figure 5
<p>The annual land cover map in 2015 derived from multi-temporal Landsat imagery over all 305,000 GSinGrid tiles using Landsat datacube.</p> "> Figure 6
<p>The relationship between the temporal frequency of the Landsat SR and the overall accuracy, as found using the validation samples.</p> "> Figure 7
<p>Density plots for Landsat images (y-axis) in land tile hh26vv05h1v2 land-tile (see <a href="#sec2dot1-remotesensing-11-01056" class="html-sec">Section 2.1</a>) acquired on 13 July 2015 against the MODIS 16-day NBAR (x-axis). The black dashed line is the 1:1 line and the solid line is the fitted line.</p> ">
Abstract
:1. Introduction
2. Datasets and Preprocessing
2.1. Landsat Imagery and Datacube
2.1.1. Reprojection and Tiling
2.1.2. Cloud and Shadow Detection and Filling
2.2. Validation Dataset
3. Methods
3.1. The Spatial-Temporal Spectral Library
3.2. Normalization of the SPECLib Reflectance Spectra
3.3. Multi-Temporal Classification Method Based on SPECLib
3.3.1. Training the Base Classifier
3.3.2. Stacking of Base Classifiers
3.3.3. Rule-Based Verification
3.4. Accuracy Assessment
4. Results and Validation
5. Discussion
5.1. Influence of the Temporal Frequency
5.2. Consistency between MCD43A4 and Landsat SR for Land-Cover Mapping
5.3. Limitations of SPECLib for Fine-Resolution Land-Cover Mapping
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azzari, G.; Lobell, D. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote. Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote. Sens. Environ. 2016, 183, 170–185. [Google Scholar]
- Wessels, K.J.; Bergh, F.V.D.; Roy, D.P.; Salmon, B.P.; Steenkamp, K.C.; MacAlister, B.; Swanepoel, D.; Jewitt, D. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote. Sens. 2016, 8, 888. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, J.; Li, X.; Li, C.; Zhao, Y.; Gong, P. A multi-resolution global land cover dataset through multisource data aggregation. Sci. China Earth Sci. 2014, 57, 2317–2329. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Tsendbazar, N.-E.; De Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Sens. 2015, 103, 93–114. [Google Scholar] [CrossRef]
- Tsendbazar, N.-E.; De Bruin, S.; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote. Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.; Gong, P.; Giri, C. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS J. Photogramm. Sens. 2015, 103, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Pengra, B.; Long, J.; Loveland, T. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinformation 2013, 25, 30–37. [Google Scholar]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Symeonakis, E.; Caccetta, P.; Koukoulas, S.; Furby, S.; Karathanasis, N. Multi-temporal land-cover classification and change analysis with conditional probability networks: the case of Lesvos Island (Greece). Int. J. Remote Sens. 2012, 33, 4075–4093. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote. Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Giménez, M.G.; De Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote. Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S.; Wulder, M.A.; White, J.C.; Hermosilla, T.; Coops, N.C. Large Area Mapping of Annual Land Cover Dynamics Using Multitemporal Change Detection and Classification of Landsat Time Series Data. Can. J. Sens. 2015, 41, 293–314. [Google Scholar] [CrossRef]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; Van Der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote. Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote. Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90m water body map using multi-temporal Landsat images. Remote. Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Roberts, D.A. The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote. Sens. Environ. 2003, 87, 295–309. [Google Scholar] [CrossRef]
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote. Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote. Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.; Zhong, L.; Chen, Y.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; E Woodcock, C.; A Macomber, S.; Gopal, S.; Song, C. Forest mapping with a generalized classifier and Landsat TM data. Remote. Sens. Environ. 2001, 77, 241–250. [Google Scholar] [CrossRef]
- E Woodcock, C.; A Macomber, S.; Pax-Lenney, M.; Cohen, W.B. Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors. Remote. Sens. Environ. 2001, 78, 194–203. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, Z.; Yong, H.; Wang, Y. Automatic land cover mapping for Landsat data based on the time-series spectral image database. In Proceedings of the Geoscience & Remote Sensing Symposium, 2017, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Dannenberg, M.P.; Hakkenberg, C.R.; Song, C. Consistent Classification of Landsat Time Series with an Improved Automatic Adaptive Signature Generalization Algorithm. Remote. Sens. 2016, 8, 691. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L. Landsat time-series land cover mapping with spectral signature extension method. Remote Sens. 2015, 19, 639–656. [Google Scholar]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote. Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote. Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Olthof, I.; Butson, C.; Fraser, R. Signature extension through space for northern land cover classification: A comparison of radiometric correction methods. Remote Sens. Environ. 2005, 95, 290–302. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wang, Y.; Hu, Y.; Zhang, B. A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 m. Int. J. Appl. Earth Obs. Geoinformation 2018, 71, 83–94. [Google Scholar] [CrossRef]
- Chen, Z. Hasituya Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote. Sens. 2017, 9, 557. [Google Scholar]
- Egorov, A.; Hansen, M.; Roy, D.; Kommareddy, A.; Potapov, P. Image interpretation-guided supervised classification using nested segmentation. Remote. Sens. Environ. 2015, 165, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Paola, J.; Schowengerdt, R. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Sens. 1995, 33, 981–996. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 1984; Available online: https://doi.org/10.1201/9781315139470 (accessed on 4 May 2019).
- Vapnik, V.; Cortes, C. Support Vector Networks. Available online: https://doi.org/10.1007/BF00994018 (accessed on 4 May 2019).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. Available online: https://doi.org/10.1023/A:1010933404324 (accessed on 4 May 2019). [CrossRef] [Green Version]
- Belgiu, M.; Drăguț, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote. Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Teillet, P.; Guindon, B.; Goodenough, D. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Masek, J.G.; Wolfe, R.; Gao, F.; Huang, C.; Vermote, E.F.; Sexton, J.O.; Ederer, G. Improved forest change detection with terrain illumination corrected Landsat images. Remote. Sens. Environ. 2013, 136, 469–483. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L.; Liu, L.; Peng, D.; Jiao, Q.; Zhang, H. A Landsat-5 Atmospheric Correction Based on MODIS Atmosphere Products and 6S Model. IEEE J. Sel. Top. Appl. Earth Obs. Sens. 2014, 7, 1609–1615. [Google Scholar] [CrossRef]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote. Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote. Sens. 2017, 9, 902. [Google Scholar] [Green Version]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube — Foundations and lessons learned. Remote. Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote. Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images. IEEE Geosci. Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI: Product User Guide Version 2. 2018. Available online: https://www.esa-landcover-cci.org/?q=webfm_send/84 (accessed on 4 May 2019).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote. Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Feng, M.; Huang, C.; Channan, S.; Vermote, E.F.; Masek, J.G.; Townshend, J.R. Quality assessment of Landsat surface reflectance products using MODIS data. Comput. Geosci. 2012, 38, 9–22. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report. 2010. Available online: http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 4 May 2019).
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote. Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Huang, C.; Masek, J.G.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote. Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Gomariz-Castillo, F.; Alonso-Sarría, F.; Cánovas-García, F. Improving Classification Accuracy of Multi-Temporal Landsat Images by Assessing the Use of Different Algorithms, Textural and Ancillary Information for a Mediterranean Semiarid Area from 2000 to 2015. Remote. Sens. 2017, 9, 1058. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Hülber, K.; Klonner, G.; Moser, D.; Schütz, M.; Wessely, J.; Willner, W.; Zimmermann, N.E.; Dullinger, S. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA 2018, 115, 1848–1853. Available online: https://www.pnas.org/content/115/8/1848 (accessed on 4 May 2019). [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Jin, X.M.; Zhang, Y.K.; Schaepman, M.E.; Clevers, J.G.P.W.; Su, Z. Impact of Elevation and Aspect on the Spatial Distribution of Vegetation in the Qilian Mountain Area with Remote Sensing Data. Available online: https://bit.ly/2Lmlkkj (accessed on 4 May 2019).
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinformation 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble approach. Remote. Sens. Environ. 2018, 204, 717–728. [Google Scholar] [CrossRef]
- Yang, X.; Lo, D.; Xia, X.; Sun, J. TLEL: A two-layer ensemble learning approach for just-in-time defect prediction. Inf. Softw. Technol. 2017, 87, 206–220. [Google Scholar] [CrossRef]
- Löw, F.; Conrad, C.; Michel, U. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS J. Photogramm. Sens. 2015, 108, 191–204. [Google Scholar] [CrossRef]
- Yin, D.; Cao, X.; Chen, X.; Shao, Y.; Chen, J. Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery. Int. J. Sens. 2013, 34, 6529–6538. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote. Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote. Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Karakizi, C.; Karantzalos, K.; Vakalopoulou, M.; Antoniou, G. Detailed Land Cover Mapping from Multitemporal Landsat-8 Data of Different Cloud Cover. Remote. Sens. 2018, 10, 1214. [Google Scholar] [CrossRef]
- Yvan, S.; Iñaki, I.; Pedro, L. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [Green Version]
- Roy, D.; Kovalskyy, V.; Zhang, H.; Vermote, E.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote. Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote. Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Song, Q.; Zheng, K. A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote. Sens. 2018, 10, 1521. [Google Scholar] [CrossRef]
- Gao, F.; De Colstoun, E.B.; Ma, R.; Weng, Q.; Masek, J.G.; Chen, J.; Pan, Y.; Song, C. Mapping impervious surface expansion using medium-resolution satellite image time series: a case study in the Yangtze River Delta, China. Int. J. Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
Level-1 Vali-System | Level-2 Vali-System | Classification System | LC Id |
---|---|---|---|
Cropland | Herbaceous rainfed cropland | Herbaceous cover | 11 |
Tree rainfed cropland | Tree or shrub cover (Orchard) | 12 | |
Irrigated cropland | Irrigated cropland | 20 | |
Forest | Evergreen broadleaved forest | Evergreen broadleaved forest | 50 |
Deciduous broadleaved forest | Open deciduous broadleaved forest (0.15 < fc < 0.4) | 61 | |
Closed deciduous broadleaved forest (fc > 0.4) | 62 | ||
Evergreen needle-leaved forest | Open evergreen needle-leaved forest (0.15 < fc < 0.4) | 71 | |
Closed evergreen needle-leaved forest (fc > 40%) | 72 | ||
Deciduous needle-leaved forest | Open deciduous needle-leaved forest (0.15 < fc < 0.4) | 81 | |
Closed deciduous needle-leaved forest (fc > 0.4) | 82 | ||
Mixed leaf forest | Mixed leaf forest (broadleaved and needle-leaved) | 90 | |
Shrubland | Evergreen shrubland | Evergreen shrubland | 121 |
Deciduous shrubland | Deciduous shrubland | 122 | |
Grassland | Grassland | Grassland | 130 |
Wetlands | Lichens and mosses | Lichens and mosses | 140 |
Wetlands | Wetlands | 180 | |
Impervious | Impervious | Impervious | 190 |
Bare areas | Sparse vegetation | Sparse vegetation (tree, herbaceous cover) (fc < 15%) | 150 |
Consolidated bare areas | Consolidated bare areas | 201 | |
Unconsolidated bare areas | Unconsolidated bare areas | 202 | |
Water body | Water body | Water body | 210 |
Ice and snow | Permanent ice and snow | Permanent ice and snow | 220 |
HRC | TRC | ICL | EBF | DBF | ENF | DNF | MLF | ESH | DSH | GRL | LIM | SPV | WEL | Imp | CBA | UBA | Water | SNI | Total | P.A. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HRC | 759 | 0 | 90 | 55 | 13 | 17 | 0 | 0 | 6 | 1 | 167 | 0 | 5 | 1 | 31 | 2 | 0 | 2 | 0 | 1149 | 0.661 |
TRC | 20 | 50 | 0 | 3 | 4 | 7 | 20 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 109 | 0.459 |
ICL | 127 | 8 | 479 | 33 | 1 | 6 | 0 | 0 | 4 | 1 | 23 | 0 | 3 | 1 | 43 | 4 | 0 | 4 | 0 | 737 | 0.650 |
EBF | 25 | 4 | 7 | 346 | 37 | 136 | 0 | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 563 | 0.615 |
DBF | 20 | 4 | 7 | 57 | 434 | 21 | 26 | 32 | 13 | 0 | 18 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 634 | 0.685 |
ENF | 35 | 8 | 8 | 190 | 92 | 373 | 16 | 25 | 4 | 0 | 23 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 777 | 0.480 |
DNF | 1 | 0 | 0 | 1 | 38 | 3 | 187 | 15 | 2 | 0 | 11 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 260 | 0.719 |
MLF | 0 | 0 | 0 | 0 | 5 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0.467 |
ESH | 4 | 2 | 1 | 17 | 1 | 16 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 95 | 0.568 |
DSH | 0 | 0 | 1 | 6 | 11 | 2 | 6 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 0.469 |
GRL | 156 | 0 | 57 | 8 | 22 | 22 | 3 | 4 | 13 | 0 | 2372 | 0 | 114 | 6 | 21 | 194 | 1 | 6 | 17 | 3016 | 0.786 |
LIM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 9 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 24 | 0.375 |
SVE | 4 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 98 | 0 | 125 | 3 | 9 | 28 | 0 | 0 | 1 | 275 | 0.455 |
WEL | 3 | 2 | 7 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 19 | 0 | 4 | 51 | 8 | 15 | 1 | 3 | 2 | 122 | 0.418 |
Imp | 46 | 1 | 27 | 3 | 8 | 6 | 1 | 0 | 1 | 0 | 35 | 0 | 7 | 4 | 152 | 4 | 0 | 5 | 0 | 300 | 0.507 |
CBA | 1 | 0 | 16 | 0 | 0 | 1 | 0 | 1 | 7 | 0 | 275 | 13 | 67 | 5 | 7 | 1932 | 6 | 2 | 7 | 2340 | 0.826 |
UBA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 11 | 38 | 0 | 0 | 56 | 0.679 |
Water | 9 | 0 | 9 | 1 | 5 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 1 | 4 | 3 | 0 | 0 | 427 | 5 | 470 | 0.909 |
SNI | 0 | 0 | 0 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 23 | 1 | 2 | 0 | 0 | 13 | 0 | 4 | 190 | 241 | 0.788 |
Total | 1210 | 79 | 713 | 725 | 675 | 617 | 263 | 86 | 112 | 32 | 3076 | 23 | 334 | 75 | 276 | 2212 | 46 | 454 | 224 | 11,232 | |
U.A. | 0.627 | 0.633 | 0.672 | 0.477 | 0.643 | 0.605 | 0.711 | 0.081 | 0.482 | 0.719 | 0.771 | 0.391 | 0.374 | 0.680 | 0.551 | 0.873 | 0.826 | 0.941 | 0.848 | ||
O.A. | 0.713 | ||||||||||||||||||||
Kappa | 0.664 |
CRL | FST | Shru | GRL | WEL | Imp | BareA | Water | SNI | Total | P.A. | |
---|---|---|---|---|---|---|---|---|---|---|---|
CRL | 1533 | 159 | 14 | 190 | 2 | 74 | 17 | 6 | 0 | 1995 | 0.768 |
FST | 119 | 2044 | 27 | 52 | 0 | 2 | 2 | 1 | 2 | 2249 | 0.909 |
Shru | 8 | 59 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 144 | 0.535 |
GRL | 213 | 59 | 13 | 2372 | 6 | 21 | 309 | 6 | 17 | 3016 | 0.786 |
WEL | 12 | 7 | 0 | 25 | 60 | 8 | 29 | 3 | 2 | 146 | 0.411 |
Imp | 74 | 18 | 1 | 35 | 4 | 152 | 11 | 5 | 0 | 300 | 0.507 |
BareA | 25 | 3 | 9 | 379 | 21 | 16 | 2208 | 2 | 8 | 2671 | 0.827 |
Water | 18 | 9 | 3 | 0 | 4 | 3 | 1 | 427 | 5 | 470 | 0.909 |
SNI | 0 | 8 | 0 | 23 | 1 | 0 | 15 | 4 | 190 | 241 | 0.788 |
Total | 2002 | 2366 | 144 | 3076 | 98 | 276 | 2592 | 454 | 224 | 11,232 | |
U.A. | 0.766 | 0.864 | 0.535 | 0.771 | 0.612 | 0.551 | 0.852 | 0.941 | 0.848 | ||
O.A. | 0.807 | ||||||||||
Kappa | 0.757 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. https://doi.org/10.3390/rs11091056
Zhang X, Liu L, Chen X, Xie S, Gao Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sensing. 2019; 11(9):1056. https://doi.org/10.3390/rs11091056
Chicago/Turabian StyleZhang, Xiao, Liangyun Liu, Xidong Chen, Shuai Xie, and Yuan Gao. 2019. "Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach" Remote Sensing 11, no. 9: 1056. https://doi.org/10.3390/rs11091056
APA StyleZhang, X., Liu, L., Chen, X., Xie, S., & Gao, Y. (2019). Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sensing, 11(9), 1056. https://doi.org/10.3390/rs11091056