Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds
<p>Spatial grid structure</p> "> Figure 2
<p>The accumulator design. (<b>a</b>) Accumulator ball. (<b>b</b>) Result of voting.</p> "> Figure 3
<p>The neighbor voxels of q, (<b>a</b>) q is a big-voxel, A and B are sub-voxels. The relationship between A (or B) and q is coplanar but not adjacent; (<b>b</b>) None of <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math> is the neighbor voxel of q.</p> "> Figure 4
<p>The coplanar voxels may be not “really coplanar”. (<b>a</b>) The result of clustering; (<b>b</b>) The partial enlarged view of (<b>a</b>); (<b>c</b>) The finally result of surface extraction without considering the non-coplanar points in coplanar voxels; (<b>d</b>) The finally result of surface extraction with Algorithm 5.</p> "> Figure 5
<p>The display of 5 point clouds. (<b>a</b>) Icosahedron; (<b>b</b>) Rock1; (<b>c</b>) Rock2; (<b>d</b>) Rock3 and (<b>e</b>) Rock4.</p> "> Figure 6
<p>The results of clustering and rock surface extraction with different parameters. (<b>a</b>,<b>b</b>) Results of clustering and rock surface extraction respectively (<math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>α</mi> </msub> <mo>=</mo> <mn>25</mn> <mspace width="3.33333pt"/> <mspace width="4pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>). (<b>c</b>,<b>d</b>) Results of clustering and rock surface extraction respectively (<math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>α</mi> </msub> <mo>=</mo> <mn>22.5</mn> <mspace width="3.33333pt"/> <mspace width="4pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>).</p> "> Figure 7
<p>The feature surface extraction results of 7 methods for icosahedron. (<b>a</b>) Original icosahedron point cloud; (<b>b</b>–<b>h</b>) Results of RHT, RG, RAN_PCL, RAN_CGAL, DSE, HT-RG and our method respectively.</p> "> Figure 8
<p>The rock surface extraction results of seven different methods for Rock1. (<b>a</b>) The reference point cloud of Rock1. (<b>b</b>–<b>h</b>) Results of RHT, RG, RAN_PCL, RAN_CGAL, HT_RG, DSE and ours, respectively. Each color represents a surface. Notice that, we use red polygons to point out the deficiencies of each result. Ellipse indicates over-segmentation, rectangle represents discontinuity, parallelogram represents incorrect result, rhombus represent bad boundary and trapezoid represents missing detection.</p> "> Figure 9
<p>The results of different methods for three other Rock-Mass point clouds.</p> "> Figure 10
<p>The reference point cloud of rock mass. (<b>a</b>) The original point cloud of Rock1. (<b>b</b>) The reference point cloud of Rock1. In addition to black, each of the other colors represents a separated surface.</p> "> Figure 11
<p>F1 scores of Rock1’s feature surfaces for different methods.</p> "> Figure 12
<p>Recall scores of Rock1’s feature surfaces for different methods.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Hough Transform
2.2. Region Growing
2.3. Random Sample Consensus
2.4. Other Methods
3. Methodology
Algorithm 1: Proposed rock surface extraction method. |
3.1. Clustering Based On Voxels
3.2. Major Orientation Estimation Based On Gaussian Kernel
3.2.1. Hemispherical Surface Accumulator
Algorithm 2: Coplanar clustering based on voxels. |
3.2.2. Computing Bivariate Gaussian Kernels
Algorithm 3: Computing and voting thresholds of coplanar voxels. |
3.2.3. Estimating Major Orientations
3.3. Rock Surface Extraction
Algorithm 4: Region growing based on voxels. |
Algorithm 5: Determining whether the neighbor belongs to . |
4. Experiments and Results
4.1. Datasets
4.2. Evaluation Metrics
4.3. Parameter Turing
- Constraint 1: each “target area” contains at least one coplanar voxel.
- Constraint 2: coplanar constraints should be as strict as possible.
- Constraint 3: the resolution of voxel should be as large as possible.
4.4. Results for Synthetic Icosahedron Point Cloud
4.5. Results for Real Rock-Mass Point Clouds
4.5.1. Qualitative Comparison
4.5.2. Quantitative Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ochmann, S.; Vock, R.; Wessel, R.; Klein, R. Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 2016, 54, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Arbeláez, P.; Girshick, R.; Malik, J. Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation. Int. J. Comput. Vis. 2015, 112, 133–149. [Google Scholar] [CrossRef]
- Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287. [Google Scholar] [CrossRef]
- Chekhlov, D.; Gee, A.P.; Calway, A.; Mayol-Cuevas, W. Ninja on a Plane: Automatic Discovery of Physical Planes for Augmented Reality Using Visual SLAM. In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Washington, DC, USA, 13–16 November 2007; pp. 1–4. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Hough, V.; Paul, C. Method and Means for Recognizing Complex Patterns. U.S. Patent US1771560A, 18 December 1962. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Chen, D.S. A data-driven intermediate level feature extraction algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 749–758. [Google Scholar] [CrossRef]
- Besl, P.J.; Jain, R.C. Segmentation through variable-order surface fitting. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 167–192. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Dube, D.; Zell, A. Real-time plane extraction from depth images with the randomized hough transform. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 1084–1091. [Google Scholar]
- Fujiwara, T.; Kamegawa, T.; Gofuku, A. Plane detection to improve 3D scanning speed using RANSAC algorithm. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013; pp. 1863–1869. [Google Scholar]
- Masuta, H.; Makino, S.; Lim, H. 3D plane detection for robot perception applying particle swarm optimization. In Proceedings of the 2014 World Automation Congress (WAC), Waikoloa, HI, USA, 3–7 August 2014; pp. 549–554. [Google Scholar]
- Lato, M.J.; Vöge, M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int. J. Rock Mech. Min. Sci. 2012, 54, 150–158. [Google Scholar] [CrossRef]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A complete manual for engineers and geologists in mining, civil and petroleum engineering. Petroleum 1989, 251, 357–365. [Google Scholar]
- Goodman, R.E.; Shi, G.H. Block Theory and Its Application to Rock Engineering. Prentice Hall 1985, 26, 103–105. [Google Scholar]
- Shi, G.H. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of deformable block structures. Eng. Comput. 1992, 9, 157–168. [Google Scholar] [CrossRef]
- Ma, G.; An, X.; He, L. The numerical manifold method: A review. Int. J. Comput. Methods 2010, 7. [Google Scholar] [CrossRef]
- Vosselman, G.; Gorte, B.G.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point clouds. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38. [Google Scholar]
- Limberger, F.A.; Oliveira, M.M. Real-time detection of planar regions in unorganized point clouds. Pattern Recognit. 2015, 48, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhang, J.; Adler, B.; Zhang, H.; Zhang, J. Three-dimensional point cloud plane segmentation in both structured and unstructured environments. Robot. Auton. Syst. 2013, 61, 1641–1652. [Google Scholar] [CrossRef]
- Borrmann, D.; Elseberg, J.; Lingemann, K.; Nüchter, A. The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design. 3D Res. 2011, 2, 3. [Google Scholar] [CrossRef]
- Huang, H.; Brenner, C. Rule-based roof plane detection and segmentation from laser point clouds. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 293–296. [Google Scholar]
- Hulik, R.; Spanel, M.; Smrz, P.; Materna, Z. Continuous plane detection in point-cloud data based on 3D Hough Transform. J. Vis. Commun. Image Represent. 2014, 25, 86–97. [Google Scholar] [CrossRef]
- Rusu, B.R.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
- Fernandes, L.A.; Oliveira, M.M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit. 2008, 41, 299–314. [Google Scholar] [CrossRef]
- Trevor, A.J.B.; Gedikli, S.; Rusu, R.B.; Christensen, H.I. Efficient organized point cloud segmentation with connected components. In Proceedings of the 3rd Workshop on Semantic Perception, Mapping and Exploration (SPME), Karlsruhe, Germany, 5 May 2013. [Google Scholar]
- Poppinga, J.; Vaskevicius, N.; Birk, A.; Pathak, K. Fast plane detection and polygonalization in noisy 3D range images. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3378–3383. [Google Scholar]
- Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Yang, M.Y.; Förstner, W. Plane detection in point cloud data. In Proceedings of the 2nd International Conference on Machine Control Guidance, Bonn, Germany, 9–11 March 2010; Volume 1, pp. 95–104. [Google Scholar]
- Xu, B.; Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens. 2016, 8, 5. [Google Scholar] [CrossRef]
- Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef]
- Holz, D.; Holzer, S.; Rusu, R.B.; Behnke, S. Real-time plane segmentation using RGB-D cameras. In Robot Soccer World Cup; Springer: Berlin, Germany, 2011; pp. 306–317. [Google Scholar]
- Yamazaki, I.; Natarajan, V.; Bai, Z.; Hamann, B. Segmenting point-sampled surfaces. Visual Comput. 2010, 26, 1421–1433. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Metzger, R.; Oppikofer, T.; Couture, R.; Derron, M.H.; Locat, J.; Turmel, D. New Insight Techniques to Analyze Rock-slope Relief Using DEM And 3Dimaging Cloud Points: COLTOP-3D Software. In Rock Mechanics: Meeting Society’s Challenges and Demands; CRC Press: Boca Raton, FL, USA, 2007; Volume 1, pp. 61–68. [Google Scholar]
- Slob, S.; van Knapen, B.; Hack, R.; Turner, K.; Kemeny, J. Method for Automated Discontinuity Analysis of Rock Slopes with Three-Dimensional Laser Scanning. Transp. Res. Record J. Transp. Res. Board 2005, 1913, 187–194. [Google Scholar] [CrossRef]
- Gigli, G.; Casagli, N. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int. J. Rock Mech. Min. Sci. 2011, 48, 187–198. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R. Discontinuity spacing analysis in rock masses using 3D point clouds. Eng. Geol. 2015, 195, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, A.; Tomás, R.; Cano, M.; Pastor, J.L.; Abellán, A. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech. Rock Eng. 2018, 51, 3005–3028. [Google Scholar] [CrossRef]
- Leng, X.; Xiao, J.; Wang, Y. A multi-scale plane-detection method based on the Hough transform and region growing. Photogramm. Record 2016, 31, 166–192. [Google Scholar] [CrossRef]
- Hansen, P.; Mladenović, N.; Todosijević, R.; Hanafi, S. Variable neighborhood search: Basics and variants. EURO J. Comput. Optim. 2017, 5, 423–454. [Google Scholar] [CrossRef]
- Allheeib, N.; Islam, M.S.; Taniar, D.; Shao, Z.; Cheema, M.A. Density-based reverse nearest neighbourhood search in spatial databases. J. Ambient Intell. Humaniz. Comput. 2018, 1–12. [Google Scholar] [CrossRef]
- Wernimont, G. Probability and Experimental Errors in Science. An Elementary Survey. Math. Gaz. 1961, 57, 148. [Google Scholar] [CrossRef]
- Tong, Y.L. The Multivariate Normal Distribution; Springer Series in Statistics; Springer: New York, NY, USA, 1990. [Google Scholar]
- Lato, M.; Kemeny, J.; Harrap, R.; Bevan, G. Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Comput. Geosci. 2013, 50, 106–114. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Chen, B.; Zai, D.; Li, J. Facet Segmentation-Based Line Segment Extraction for Large-Scale Point Clouds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4839–4854. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. An Automatic and Threshold-Free Performance Evaluation System for Building Extraction Techniques From Airborne LIDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4184–4198. [Google Scholar] [CrossRef]
- Yan, J.; Shan, J.; Jiang, W. A global optimization approach to roof segmentation from airborne lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 94, 183–193. [Google Scholar] [CrossRef]
- Ni, H.; Lin, X.; Zhang, J. Classification of ALS point cloud with improved point cloud segmentation and random forests. Remote Sens. 2017, 9, 288. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recog. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Hassanein, A.S.; Mohammad, S.; Sameer, M.; Ragab, M.E. A Survey on Hough Transform, Theory, Techniques and Applications. Int. J. Comput. Sci. Issues (IJCSI) Mahebourg 2015, 12, 139–156. [Google Scholar]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Zhai, D.; Li, W.; Li, J. Toward better boundary preserved supervoxel segmentation for 3D point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 39–47. [Google Scholar] [CrossRef]
- Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel cloud connectivity segmentation—Supervoxels for point clouds. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2027–2034. [Google Scholar]
Name | Number of Points | Maximum Point Spacing (m) | Minimum Point Spacing (m) | Average Point Spacing (m) | Bounding Box Size (m) |
---|---|---|---|---|---|
Icosahedron | 372,140 | 0.1308 | 0.0634 | ||
Rock1 | 387,610 | 0.5167 | 0.0299 | 0.0396 | |
Rock2 | 264,309 | 0.4663 | 0.0499 | 0.0639 | |
Rock3 | 1,178,578 | 0.8016 | 0.0244 | 0.0311 | |
Rock4 | 1,024,521 | 0.1728 | 0.0009 | 0.0191 |
Stage | ID | Parameters | Meaning | Configuration method |
---|---|---|---|---|
Clustering | 1 | knn | Neighbors for estimating the normal | Related to the spatial extent of feature surfaces. Set manually. |
2 | The length of big voxel | Related to the spatial extend of feature surfaces. Set manually. | ||
3 | Allowable maximum ratio about and | 20–40, related to the roughness of the surface. Set manually. | ||
4 | Allowable maximum MSE value of coplanar voxels | 0.05–0.15, related to the roughness of the surface. Set manually. | ||
5 | Minimum number of points in a big voxel | Related to the sample densities of the point cloud and . Set manually. | ||
6 | Minimum number of points in a small voxel | Related to the sample densities of the point cloud and . Set manually. | ||
Major orientation estimation | 1 | The discretization of | Default is 180. | |
2 | The discretization of | Default is 360. | ||
3 | The weight coefficient of the edge length of voxel | Default is 0.75. | ||
4 | The weight coefficient of the points contained in voxel | Default is 0.25 . | ||
5 | The size of sliding-window | Default is 8. | ||
Rock surface extraction | 1 | Allowable maximum distance between a point to a surface or a surface to another surface | Related to the roughness of the surface. Set manually. | |
2 | Allowable minimum number of points in a surface | Related to the spatial extent of feature surfaces. Set manually. | ||
3 | Maximum angle between major orientation and the normal vector of voxel | |||
4 | Maximum angle between the normal vector of surface and the normal vector of neighbor voxel | |||
5 | Maximum angle between the normal vector of point and the normal vector of surface | . Default is |
Parameter | Icosahedron | Rock1 | Rock2 | Rock3 | Rock4 |
---|---|---|---|---|---|
knn | 50 | 80 | 80 | 80 | 80 |
6 | 1.73 | 1.73 | 1.70 | 1.50 | |
40 | 30 | 22.5 | 30 | 30 | |
0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
150 | 150 | 150 | 300 | 300 | |
300 | 300 | 300 | 600 | 600 | |
0.1 | 0.3 | 0.3 | 0.3 | 0.3 | |
2000 | 900 | 900 | 1000 | 1000 | |
Method | Time (s) | Number of Detected Surfaces |
---|---|---|
RHT | 2.083 | 20 |
RG | 7.678 | 20 |
RAN_PCL | 19.068 | 20 |
RAN_CGAL | 1.802 | 20 |
DSE | 90.810 | 20 |
HT-RG | 8.780 | 20 |
Ours | 0.246 | 20 |
Method | Time (s) | Number of Detected Surfaces |
---|---|---|
RHT | 7.312 | 25 |
RG | 15.122 | 25 |
RAN_PCL | 22.342 | 25 |
RAN_CGAL | 2.869 | 26 |
HT_RG | 59.606 | 29 |
DSE | 108.684 | 30 |
Ours | 0.445 | 23 |
Date | Number of Points | Clustering | Major Orientation Estimation | Region Growing | Total |
---|---|---|---|---|---|
Icosahedron | 372,140 | 0.03644 | 0.08542 | 0.12414 | 0.24600 |
Rock1 | 387,610 | 0.05572 | 0.12329 | 0.26621 | 0.44522 |
Rock2 | 264,309 | 0.06060 | 0.12159 | 0.24291 | 0.42510 |
Rock3 | 1,178,578 | 0.11082 | 0.18914 | 1.36345 | 1.66341 |
Rock4 | 1,024,521 | 0.07757 | 0.13365 | 0.51241 | 0.72363 |
Method | Precision | Recall | F1 |
---|---|---|---|
RHT | 74.23% | 77.53% | 75.85% |
RG | 77.98% | 76.23% | 77.10% |
RAN-PCL | 81.70% | 81.17% | 81.43% |
RAN-CGAL | 85.42% | 83.66% | 84.53% |
HT-RG | 91.18% | 86.37% | 88.71% |
DSE | 81.28% | 74.77% | 77.89% |
OURS | 91.92% | 91.67% | 91.80% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xiao, J.; Wang, Y. Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds. Remote Sens. 2019, 11, 635. https://doi.org/10.3390/rs11060635
Liu L, Xiao J, Wang Y. Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds. Remote Sensing. 2019; 11(6):635. https://doi.org/10.3390/rs11060635
Chicago/Turabian StyleLiu, Lupeng, Jun Xiao, and Ying Wang. 2019. "Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds" Remote Sensing 11, no. 6: 635. https://doi.org/10.3390/rs11060635
APA StyleLiu, L., Xiao, J., & Wang, Y. (2019). Major Orientation Estimation-Based Rock Surface Extraction for 3D Rock-Mass Point Clouds. Remote Sensing, 11(6), 635. https://doi.org/10.3390/rs11060635