Particle Center Supported Plane for Subsurface Target Classification based on Full Polarimetric Ground Penetrating Radar
"> Figure 1
<p>Outlier and sample center. (<b>a</b>) The influence of outlier, where Class 1 and Class 2 represent the samples of two different type of targets. (<b>b</b>) Sample center of four points.</p> "> Figure 2
<p>Particle center supported plane. (<b>a</b>) Calculation of a boundary. (<b>b</b>) Discriminant process.</p> "> Figure 3
<p>Data processing flow chart.</p> "> Figure 4
<p>Four types of targets in the dry sand trough. (<b>a</b>) Metallic sphere. (<b>b</b>) Metallic cylinder. (<b>c</b>) Metallic dihedral. (<b>d</b>) Metallic multibranch.</p> "> Figure 5
<p>Full polarimetric ground penetrating radar (GPR) measurement system.</p> "> Figure 6
<p>Three types of antenna combinations. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization. H represents horizontal polarimetric antenna, V represents vertical polarimetric antenna.</p> "> Figure 7
<p>Full polarimetric data of metallic sphere. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization.</p> "> Figure 8
<p>Ful polarimetric data of metallic cylinder. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization.</p> "> Figure 9
<p>Full polarimetric data of metallic dihedral. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization.</p> "> Figure 10
<p>Full polarimetric data of metallic multibranch. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization.</p> "> Figure 11
<p>Particle swarm optimization (PSO) for H-Alpha data. (<b>a</b>) Training H-Alpha data before PSO. (<b>b</b>) Sample centers after PSO iteration.</p> "> Figure 12
<p>Fcost and thresholds of six boundaries. (<b>a</b>) Multibranch and dihedral. (<b>b</b>) Multibranch and cylinder. (<b>c</b>) Multibranch and sphere. (<b>d</b>) Dihedral and cylinder. (<b>e</b>) Dihedral and sphere. (<b>f</b>) Cylinder and sphere.</p> "> Figure 13
<p>All boundary lines.</p> "> Figure 14
<p>Classification result of four types of targets. (<b>a</b>) Sphere. (<b>b</b>) Cylinder. (<b>c</b>) Dihedral. (<b>d</b>) Multibranch.</p> "> Figure 15
<p>The real classification plane. (<b>a</b>) Lines that make contribution to the classification. (<b>b</b>) The real classification plane.</p> "> Figure 16
<p>Three measuring methods with different measuring angles.</p> "> Figure 17
<p>500 MHz MALA GPR system. (<b>a</b>) The measuring angle is 0°. (<b>b</b>) The measuring angle is 45°. (<b>c</b>) The measuring angle is 90°.</p> "> Figure 18
<p>Real full-polarimetric data of two pipes. (<b>a</b>) HH polarization, (<b>b</b>) HV polarization, (<b>c</b>) VV polarization.</p> "> Figure 19
<p>Particle center supported plane result. (<b>a</b>) Pipe 1. (<b>b</b>) Pipe 2.</p> "> Figure 20
<p>Three different pipes in the try sand trough.</p> "> Figure 21
<p>Three different pipes in the try sand trough.</p> "> Figure 22
<p>The measurement data of three different pipes in the try sand trough. (<b>a</b>) HH polarization. (<b>b</b>) HV polarization. (<b>c</b>) VV polarization.</p> "> Figure 23
<p>The identification results of three different pipes in the try sand trough. (<b>a</b>) Pipe 1. (<b>b</b>) Pipe 2. (<b>c</b>) Pipe 3.</p> "> Figure 24
<p>Classical H-Alpha classification template.</p> "> Figure 25
<p>Support vector machine, where Class 1 and Class 2 represent the samples of two different type of targets.</p> "> Figure 26
<p>Classical H-Alpha classification result.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. H-Alpha Decomposition
2.2. Particle Center Supported Plane
2.3. Data Processing Flow Chart
3. Data Analysis of Typical Targets in the Laboratory and Outdoors
3.1. Full polarimetric GPR Measurement
3.2. H-Alpha Decomposition for GPR Data
3.3. Particle Center Supported Plane
4. Identification for Real Data of Subsurface Pipes
5. Discussion
5.1. Identification for Three Pipes of Different Depths, Diameters and Materials.
5.2. Comparison with Classical H-Alpha Classification and Support Vector Machine (SVM)
5.3. Limitations of the Proposed Technique
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ukaegbu, I.K.; Gamage, K.A.A.; Aspinall, M.D. Nonintrusive Depth Estimation of Buried Radioactive Wastes Using Ground Penetrating Radar and a Gamma Ray Detector. Remote Sens. 2019, 11, 141. [Google Scholar] [CrossRef]
- Li, W.T.; Cui, X.H.; Guo, L.; Chen, J.; Chen, X.H.; Cao, X. Tree Root Automatic Recognition in Ground Penetrating Radar Profiles Based on Randomized Hough Transform. Remote Sens. 2016, 8, 430. [Google Scholar] [CrossRef]
- Park, B.; Kim, J.; Lee, J.; Kang, M.S.; An, Y.K. Underground Object Classification for Urban Roads Using Instantaneous Phase Analysis of Ground-Penetrating Radar (GPR) Data. Remote Sens. 2018, 10, 1417. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Y.; Liu, C.; Fehler, M. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar. Geophys. J. Int. 2015, 202, 1324–1338. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Y.; Liu, C. Combination of H-Alpha Decomposition and Migration for Enhancing Subsurface Target Classification of GPR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4852–4861. [Google Scholar] [CrossRef]
- Feng, X.; Sato, M. Pre-stack migration applied to GPR for landmine detection. Inverse Prob. 2004, 20, 99–115. [Google Scholar] [CrossRef]
- Böniger, U.; Tronicke, J. Subsurface Utility Extraction and Characterization: Combining GPR Symmetry and Polarization Attributes. IEEE Trans. Geosci. Remote Sens. 2011, 50, 736–746. [Google Scholar] [CrossRef]
- Sassen, D.S.; Everett, M.E. 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics 2008, 74, J23–J34. [Google Scholar] [CrossRef]
- Kevin, O. Discrimination of UXO in Soil Using Broadband Polarimetric GPR Backscatter. IEEE Trans. Geosci. Remote Sens. 2001, 39, 356–367. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Y.; Lu, Q. Application of freeman decomposition to full polarimetric GPR. In Proceedings of the 2013 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 3534–3537. [Google Scholar]
- Feng, X.; Liang, W.J.; Liu, C. Application of Freeman decomposition to full polarimetric GPR for improving subsurface target classification. Signal Process. 2017, 132, 284–292. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Kennedy, J. The particle swarm: social adaptation of knowledge. In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308. [Google Scholar]
- Zhu, T.; Li, X.F. PSO-gradient algorithm and its application to seismic waveform inversion for velocity structure in frequency domain. Prog. Geophys. 2013, 28, 0180–0189. [Google Scholar]
- Zheng, S.; Zhang, A.X. Ground Penetrating Radar Inversion Algorithm Based on Improved Particle Swarm Optimization. J. Electron. Inf. Technol. 2014, 36, 2717–2722. [Google Scholar]
- Shi, X.M.; Xiao, M. The damped PSO algorithm and its application for magnetotelluric sounding data inversion. Chinese J. Geophys. 2009, 52, 1114–1120. (In Chinese) [Google Scholar]
- Wang, Y.F. The Particle Swarm Optimization and its Application. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2008. [Google Scholar]
- Chouhan, R.; Purohit, A. An approach for document clustering using PSO and K-means algorithm. In Proceedings of the 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 1380–1384. [Google Scholar]
- Mir, M.; Tadayon Tabrizi, G. Improving data clustering using fuzzy logic and PSO algorithm. In Proceedings of the 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, Iran, 15–17 May 2012; pp. 784–788. [Google Scholar]
- Davodi, M.; Modares, H. Coherency approach by hybrid PSO, K-Means clustering method in power system. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; pp. 1203–1207. [Google Scholar]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef]
- Liu, T.; Su, Y.; Huang, C.L. Inversion of Ground Penetrating Radar Data Based on Neural Networks. Remote Sens. 2018, 10, 730. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Feng, X. Combination of Support Vector Machine and H-Alpha Decomposition for Subsurface Target Classification of GPR. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 635–638. [Google Scholar]
- Zhang, M.H.; Feng, X. Full-polarimetric Ground Penetrating Radar Underground Objects Classification Using Random Forest. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 689–693. [Google Scholar]
- Yu, Y. Development of H-Alpha Feature Decomposition Technology for Full-polarimetric Ground Penetrating Radar. Ph.D. Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
Boundary | L1 | L2 | L3 | L4 | L5 | L6 |
---|---|---|---|---|---|---|
Type | multibranch | multibranch | multibranch | dihedral | dihedral | cylinder |
dihedral | cylinder | sphere | cylinder | sphere | sphere |
Target | Accuracy (%) |
---|---|
Sphere | 91.63 |
Cylinder | 86.76 |
Dihedral | 80.89 |
Multibranch | 92.74 |
Target | Probability of Sphere (%) | Probability of Cylinder (%) | Probability of Dihedral (%) | Probability of Multibranch (%) |
---|---|---|---|---|
Pipe 1 | 1.26 | 68.91 | 28.57 | 4.62 |
Pipe 2 | 0.51 | 72.31 | 7.69 | 6.15 |
Target | Depth (cm) | Diameter (cm) | Material |
---|---|---|---|
Pipe 1 | 15 | 3 | PVC |
Pipe 2 | 15 | 2 | Metallic |
Pipe 3 | 20 | 4 | Metallic |
Target | Probability of Sphere (%) | Probability of Cylinder (%) | Probability of Dihedral (%) | Probability of Multibranch (%) |
---|---|---|---|---|
Pipe 1 | 0.00 | 88.69 | 10.71 | 0.30 |
Pipe 2 | 7.22 | 80.56 | 6.67 | 2.78 |
Pipe 3 | 6.54 | 88.24 | 2.61 | 1.31 |
Methods | L-SVM | H-Alpha | PCSP | |
---|---|---|---|---|
Targets | ||||
Sphere | 90.99 | 91.87 | 91.63 | |
Cylinder | 81.29 | 47.35 | 86.76 | |
Dihedral | 77.89 | 87.70 | 80.89 | |
Multibranch | 92.74 | 74.53 | 92.74 |
Comparison Parameters | L-SVM | PCSP |
---|---|---|
Operation time (s) | 10.067 | 5.841 |
RAM usage (MB) | 2825 | 3034 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Zhou, H.; Liu, C.; Zhang, Y.; Liang, W.; Nilot, E.; Zhang, M.; Dong, Z. Particle Center Supported Plane for Subsurface Target Classification based on Full Polarimetric Ground Penetrating Radar. Remote Sens. 2019, 11, 405. https://doi.org/10.3390/rs11040405
Feng X, Zhou H, Liu C, Zhang Y, Liang W, Nilot E, Zhang M, Dong Z. Particle Center Supported Plane for Subsurface Target Classification based on Full Polarimetric Ground Penetrating Radar. Remote Sensing. 2019; 11(4):405. https://doi.org/10.3390/rs11040405
Chicago/Turabian StyleFeng, Xuan, Haoqiu Zhou, Cai Liu, Yan Zhang, Wenjing Liang, Enhedelihai Nilot, Minghe Zhang, and Zejun Dong. 2019. "Particle Center Supported Plane for Subsurface Target Classification based on Full Polarimetric Ground Penetrating Radar" Remote Sensing 11, no. 4: 405. https://doi.org/10.3390/rs11040405
APA StyleFeng, X., Zhou, H., Liu, C., Zhang, Y., Liang, W., Nilot, E., Zhang, M., & Dong, Z. (2019). Particle Center Supported Plane for Subsurface Target Classification based on Full Polarimetric Ground Penetrating Radar. Remote Sensing, 11(4), 405. https://doi.org/10.3390/rs11040405