A Novel Method for High-Voltage Bundle Conductor Reconstruction from Airborne LiDAR Data
"> Figure 1
<p>Processing flowchart of the proposed method.</p> "> Figure 2
<p>Local right-handed coordinate system.</p> "> Figure 3
<p>Extraction single power line span: (<b>a</b>) spatial clustering; and (<b>b</b>) consistency checking.</p> "> Figure 4
<p>Structure of three typical bundle conductors: (<b>a</b>) and (<b>b</b>) are a 2-bundled conductor in the horizontal arrangement and vertical arrangement, respectively; and (<b>c</b>) is a 4-bundled conductor.</p> "> Figure 5
<p>Sub-conductor extraction: (<b>a</b>) projected dichotomy on the XOZ plane; and (<b>b</b>) projected dichotomy on the XOY plane.</p> "> Figure 6
<p>Diagram of the catenary equation parameter.</p> "> Figure 7
<p>Flowchart of the RANSAC algorithm.</p> "> Figure 8
<p>Calculation of the initial catenary model.</p> "> Figure 9
<p>Airborne LiDAR (Light Detection and Ranging) data of the three processed datasets. (<b>a</b>–<b>c</b>) are the three detected high-voltage power transmission corridors of datasets I–III, respectively.</p> "> Figure 10
<p>Original point clouds of four typical power lines. (<b>a</b>) single conductor; (<b>b</b>) 2-bundled conductor in a horizontal arrangement; (<b>c</b>) 2-bundled conductor in a vertical arrangement; and (<b>d</b>) 4-bundled conductor.</p> "> Figure 11
<p>Power transmission corridor classification results. (<b>a</b>) front view; (<b>b</b>) vertical view. Ground points are colored in blue, vegetation points are colored in green, power lines are colored in yellow, and power pylons are colored in red.</p> "> Figure 12
<p>Original point clouds of single conductors. (<b>a</b>) is the correctly identified single conductor of high point density and high data quality, while (<b>b</b>) is the misidentified single conductor of low point density and low data quality.</p> "> Figure 13
<p>Results of the bundle conductor extraction. (<b>a</b>–<b>c</b>) are the extraction results of 2-bundled conductors in a horizontal arrangement; 2-bundled conductors in a vertical arrangement; and 4-bundled conductors, respectively.</p> "> Figure 13 Cont.
<p>Results of the bundle conductor extraction. (<b>a</b>–<b>c</b>) are the extraction results of 2-bundled conductors in a horizontal arrangement; 2-bundled conductors in a vertical arrangement; and 4-bundled conductors, respectively.</p> "> Figure 14
<p>Model fitting results of power lines. (<b>a</b>–<b>c</b>) are the fitting results of the 2-bundled conductors in a horizontal arrangement, 2-bundled conductors in a vertical arrangement, and 4-bundled conductors, respectively.</p> "> Figure 14 Cont.
<p>Model fitting results of power lines. (<b>a</b>–<b>c</b>) are the fitting results of the 2-bundled conductors in a horizontal arrangement, 2-bundled conductors in a vertical arrangement, and 4-bundled conductors, respectively.</p> "> Figure 15
<p>Comparison between the fitted power lines and the original points: (<b>a</b>) comparison of a 2-bundled conductor with a horizontal arrangement; (<b>b</b>) comparison of a 2-bundled conductor with a vertical arrangement; and (<b>c</b>) comparison of a 4-bundled conductor.</p> "> Figure 16
<p>Robustness to noise: (<b>a</b>) the original power line points with noise; (<b>b</b>) bundle conductor extraction results; and (<b>c</b>) the double-RANSAC-based fitting results.</p> "> Figure 16 Cont.
<p>Robustness to noise: (<b>a</b>) the original power line points with noise; (<b>b</b>) bundle conductor extraction results; and (<b>c</b>) the double-RANSAC-based fitting results.</p> "> Figure 17
<p>Robustness to breakage with both sub-conductors removed: (<b>a</b>) the original break power line; (<b>b</b>) sub-conductor extraction results; and (<b>c</b>) the double-RANSAC-based fitting results.</p> "> Figure 18
<p>Robustness to breakage with single sub-conductors removed: (<b>a</b>) the original break power line; (<b>b</b>) sub-conductor extraction results; and (<b>c</b>) the double-RANSAC-based fitting results.</p> "> Figure 19
<p>Original point clouds of power lines with high data quality.</p> "> Figure 20
<p>Effect of Gaussian noise. (<b>a</b>–<b>d</b>) are the Gaussian standard deviation = 0.3 mr, 0.5 mr, 0.7 mr, and 0.8 mr, respectively.</p> ">
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
1.3. Overview
2. Methodology
2.1. Power Transmission Corridor Detection and Classification
2.2. Spatial Clustering-Based Single Power Line Span Extraction
2.3. Fitting Residuals-Based Bundle Conductor Identification
2.4. Projected Dichotomy for Sub-Conductor Extraction
2.5. Double-RANSAC-Based Model Fitting
Algorithm 1. Detailed procedure of initial catenary model calculation. |
|
3. Experimental Data
4. Results
4.1. Power Transmission Corridor Classification
4.2. Bundle Conductor Identification
4.3. Sub-Conductor Extraction
4.4. Power Line Model Fitting
5. Discussion
5.1. Robustness to Noise
5.2. Robustness to Breakage
5.3. Effect of Data Quality
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, W.; Huang, W.; Xu, B.; Jiang, S. A Heuristic Method for Power Pylon Reconstruction from Airborne LiDAR Data. Remote Sens. 2017, 9, 1172. [Google Scholar] [CrossRef]
- Global Transmission and Distribution Report—Infrastructure, Upcoming Projects, Investments, Key Operators and Analysis to 2020. Available online: https://www.globaldata.com/store/search/power/ (accessed on 20 July 2017).
- Qin, X.; Wu, G.; Ye, X.; Huang, L.; Lei, J. A Novel Method to Reconstruct Overhead High-Voltage Power Lines Using Cable Inspection Robot LiDAR Data. Remote Sens. 2017, 9, 753. [Google Scholar] [CrossRef]
- Aggarwal, R.K.; Johns, A.T.; Jayasinghe, J.A.S.B.; Su, W. An overview of the condition monitoring of overhead lines. Electr. Power Syst. Res. 2000, 53, 15–22. [Google Scholar] [CrossRef]
- Torabzadeh, H.; Morsdorf, F.; Schaepman, M.E. Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems—A review. ISPRS J. Photogramm. Remote Sens. 2014, 97, 25–35. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z. Voxel-Based Extraction of Transmission Lines from Airborne LiDAR Point Cloud Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Guo, B.; Li, Q.; Huang, X.; Wang, C. An improved method for power-line reconstruction from point cloud data. Remote Sens. 2016, 8, 36. [Google Scholar] [CrossRef]
- Qin, X.; Wu, G.; Lei, J.; Fan, F.; Ye, X. Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data. Sensors (Basel) 2018, 18, 1284. [Google Scholar] [CrossRef]
- Mills, S.J.; Castro, M.P.G.; Li, Z.; Cai, J.; Member, S.; Hayward, R.; Mejias, L.; Walker, R.A. Evaluation of Aerial Remote Sensing Techniques for Vegetation Management in Power-Line Corridors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3379–3390. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, N.R.; Burdett, J.M.; Vandenbrooks, J.M.; Quinlan, M.C.; Call, G.B. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci. Rep. 2015, 5, 339–352. [Google Scholar] [CrossRef]
- Sarabandi, K.; Park, M. Extraction of Power Line Maps from Millimeter-Wave Polarimetric SAR Images. IEEE Trans. Antennas Propag. 2000, 48, 1802–1809. [Google Scholar] [CrossRef]
- Stockton, G.R. Advances in applications and methodology for aerial infrared thermography. Proc. SPIE Int. Soc. Opt. Eng. 2004, 6205, 124. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Walker, R.; Hayward, R.; Zhang, J. Toward automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved hough transform. Mach. Vis. Appl. 2010, 21, 677–686. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, W.; Huang, W.; Yang, L. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sens. 2017, 9, 278. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, J.; Wen, C.; Huang, P. Extraction of power lines from mobile laser scanning data. Proc. SPIE 2016, 9901, 990105. [Google Scholar] [CrossRef]
- Cheng, L.; Tong, L.; Wang, Y.; Li, M. Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data. Remote Sens. 2014, 6, 3302–3320. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Hyyppä, J. Fully-automated power line extraction from airborne laser scanning point clouds in forest areas. Remote Sens. 2014, 6, 11267–11282. [Google Scholar] [CrossRef]
- McLaughlin, R.A. Extracting transmission lines from airborne LIDAR data. IEEE Geosci. Remote Sens. Lett. 2006, 3, 222–226. [Google Scholar] [CrossRef]
- Kim, H.B.; Sohn, G. Point-based Classification of Power Line Corridor Scene Using Random Forests. Photogramm. Eng. Remote Sens. 2013, 79, 821–833. [Google Scholar] [CrossRef]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using JointBoost. ISPRS J. Photogramm. Remote Sens. 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Liu, L.; Zheng, D.; Li, C.; Li, K. Supervised classification of power lines from airborne LiDAR data in Urban Areas. Remote Sens. 2017, 9, 771. [Google Scholar] [CrossRef]
- Choi, S.; Kim, T.; Yu, W. Performance evaluation of RANSAC family. In Proceedings of the British Machine Vision Conference, London, UK, 7–10 September 2009. [Google Scholar]
- Chum, O.; Matas, J. Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1472–1482. [Google Scholar] [CrossRef] [PubMed]
- Stigler, S.M. Gauss and the Invention of Least Squares. Ann. Stat. 1981, 9, 465–474. [Google Scholar] [CrossRef]
- Melzer, T.; Briese, C. Extraction and Modeling of Power Lines from ALS Point Clouds. In Proceedings of the 28th Work Austrian Association Pattern Recognition, Hagenberg, Austria, 17–18 June 2004; Volume 8. [Google Scholar]
- Liang, J.; Zhang, J. A New Power-line Extraction Method Based on Airborne LiDAR Point Cloud Data. Int. Symp. Image Data Fusion 2011, 2–5. [Google Scholar] [CrossRef]
- Chen, Z.; Lan, Z.; Long, H.; Hu, Q. 3D modeling of pylon from airborne LiDAR data. In Proceedings of the SPIE 9158, Remote Sensing of the Environment: 18th National Symposium on Remote Sensing of China, 915807, Wuhan, China, 20–23 October 2012. [Google Scholar]
- Li, Q.; Chen, Z.; Hu, Q. A model-driven approach for 3d modeling of pylon from airborne LiDAR data. Remote Sens. 2015, 7, 11501–11524. [Google Scholar] [CrossRef]
- Guo, B.; Huang, X.; Li, Q. A Stochastic Geometry Method for Pylon Reconstruction from Airborne LiDAR Data. Remote Sens. 2016, 8, 243. [Google Scholar] [CrossRef]
- Blomley, R.; Jutzi, B.; Weinmann, M. Classification of Airborne Laser Scanning Data Using Geometric Multi-Scale Features and Different Neighbourhood Types. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-3, 169–176. [Google Scholar] [CrossRef]
- Chen, C.; Yang, B.; Song, S.; Peng, X.; Huang, R. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-Borne LIDAR data. Remote Sens. 2018, 10, 613. [Google Scholar] [CrossRef]
- Guan, H.; Yu, Y.; Li, J.; Ji, Z.; Zhang, Q. Extraction of power-transmission lines from vehicle-borne lidar data. Int. J. Remote Sens. 2016, 37, 229–247. [Google Scholar] [CrossRef]
- Jwa, Y.; Sohn, G. A piecewise catenary curve model growing for 3D power line reconstruction. Photogramm. Eng. Remote Sens. 2015, 78, 1227–1240. [Google Scholar] [CrossRef]
- Chen, C.; Breiman, L. Using Random Forest to Learn Imbalanced Data; Technical Report 666; University of California, Berkeley: Berkeley, CA, USA, 2004. [Google Scholar]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A convolutional neural network-based 3D semantic labeling method for ALS point clouds. Remote Sens. 2017, 9, 936. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 180–194. [Google Scholar] [CrossRef]
Dataset | Points Number | Area (m2) | Density (pts/m2) | Point Distance (m) | Line Number | Data Quality | Bundle Conductor Arrangement | |
---|---|---|---|---|---|---|---|---|
Along | Vertical | |||||||
I | 43,879,821 | 40 ∗ 2000 | 548.5 | 0.10 | 0.35 | 25 | middle | 2-bundled in vertical |
II | 25,212,971 | 40 ∗ 730 | 863.5 | 0.07 | 0.15 | 24 | high | 4-bundled conductor |
III | 459,709 | 80 ∗ 600 | 9.6 | 0.45 | 0.50 | 24 | low | 2-bundled in horizontal; single conductor |
Type | Ground | Vegetation | Power Line | Power Pylon |
---|---|---|---|---|
Points number | 64,157 | 164,949 | 8507 | 6120 |
Repeat number | 2 | 1 | 19 | 26 |
Overall Accuracy: 97.71% | ||||
---|---|---|---|---|
Ground | Vegetation | Power Line | Power Pylon | |
Precision (%) | 99.35 | 97.40 | 97.02 | 94.35 |
Recall (%) | 95.09 | 99.81 | 98.17 | 86.17 |
Single Conductor | 2-Bundled Conductor | 4-Bundled Conductor | ||
---|---|---|---|---|
Horizontal | Vertical | |||
Total | 34 | 12 | 21 | 16 |
Identified | 32 | 12 | 21 | 16 |
Correctness | 94.17% | 100% | 100% | 100% |
Residual | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
XY (m) | 0.04 | 0.03 | 0.05 | 0.05 | 0.06 | 0.07 |
Z (m) | 0.02 | 0.04 | 0.07 | 0.05 | 0.02 | 0.03 |
Sum (m) | 0.04 | 0.06 | 0.09 | 0.08 | 0.07 | 0.08 |
Residual (m) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
XY (m) | 0.09 | 0.06 | 0.06 | 0.07 | 0.09 | 0.05 |
Z (m) | 0.32 | 0.29 | 0.31 | 0.40 | 0.24 | 0.27 |
Sum (m) | 0.36 | 0.30 | 0.32 | 0.41 | 0.27 | 0.28 |
Residual (m) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
XY (m) | 0.34 | 0.26 | 0.29 | 0.32 | 0.32 | 0.26 |
Z (m) | 0.21 | 0.08 | 0.10 | 0.11 | 0.19 | 0.07 |
Sum (m) | 0.42 | 0.28 | 0.32 | 0.36 | 0.40 | 0.28 |
Residual (m) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
XY (m) | 0.35 | 0.29 | 0.24 | 0.29 | 0.29 | 0.24 |
Z (m) | 0.31 | 0.27 | 0.32 | 0.28 | 0.24 | 0.32 |
Sum (m) | 0.53 | 0.46 | 0.44 | 0.44 | 0.43 | 0.44 |
2-Bundled Conductor | 4-Bundled Conductor | ||
---|---|---|---|
Horizontal | Vertical | ||
Extracted number | 24 (12 × 2) | 42 (21 × 2) | 64 (16 × 4) |
Correctness | 100% | 100% | 100% |
Single Conductor | 2-Bundled Conductor | 4-Bundled Conductor | ||||||
---|---|---|---|---|---|---|---|---|
D_sum | D_sum | D_sub | D_sum | D_sum | ||||
0.04 | 0.36 | 0.09 | 0.04 | 0.36 | 0.09 | 0.04 | 0.36 | 0.09 |
0.06 | 0.30 | 0.12 | 0.06 | 0.30 | 0.12 | 0.06 | 0.30 | 0.12 |
0.09 | 0.32 | 0.12 | 0.09 | 0.32 | 0.12 | 0.09 | 0.32 | 0.12 |
0.08 | 0.41 | 0.10 | 0.08 | 0.41 | 0.10 | 0.08 | 0.41 | 0.10 |
0.07 | 0.27 | 0.07 | 0.07 | 0.27 | 0.07 | 0.07 | 0.27 | 0.07 |
0.08 | 0.28 | 0.08 | 0.08 | 0.28 | 0.08 | 0.08 | 0.28 | 0.08 |
Sample Distance (m) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|---|
Success | 8 | 8 | 8 | 8 | 8 | 6 | 2 |
Failure | 0 | 0 | 0 | 0 | 0 | 2 | 6 |
Standard Deviation (mr) | 0.1 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
---|---|---|---|---|---|---|---|
Success | 8 | 8 | 8 | 8 | 7 | 6 | 6 |
Failure | 0 | 0 | 0 | 0 | 1 | 2 | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Jiang, W.; Jiang, S. A Novel Method for High-Voltage Bundle Conductor Reconstruction from Airborne LiDAR Data. Remote Sens. 2018, 10, 2051. https://doi.org/10.3390/rs10122051
Zhou R, Jiang W, Jiang S. A Novel Method for High-Voltage Bundle Conductor Reconstruction from Airborne LiDAR Data. Remote Sensing. 2018; 10(12):2051. https://doi.org/10.3390/rs10122051
Chicago/Turabian StyleZhou, Ruqin, Wanshou Jiang, and San Jiang. 2018. "A Novel Method for High-Voltage Bundle Conductor Reconstruction from Airborne LiDAR Data" Remote Sensing 10, no. 12: 2051. https://doi.org/10.3390/rs10122051
APA StyleZhou, R., Jiang, W., & Jiang, S. (2018). A Novel Method for High-Voltage Bundle Conductor Reconstruction from Airborne LiDAR Data. Remote Sensing, 10(12), 2051. https://doi.org/10.3390/rs10122051