A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau
"> Figure 1
<p>Distributions of rain gauges for validation and calibration over the Tibetan Plateau (TP).</p> "> Figure 2
<p>Flow chart for obtaining retrospective precipitation estimates at ~1 km, in 1990s, using wavelet coherence and Cubist.</p> "> Figure 3
<p>Mann–Kendall test of mean annual precipitation based on rain gauges over the TP from 1954 to 2013.</p> "> Figure 4
<p>The correlations and similarities of precipitation patterns in the target year, 1990, and reference years from 2000 to 2013. The X-axis indicated the period along the whole year; the Y-axis indicated the temporal scales; the 95% confidence levels were shown as the thick solid lines; the color bar indicated the strength of correlation.</p> "> Figure 5
<p>The line chart of (<b>a</b>) precipitation variations in 1990 (blue lines) and those variations in 2006 (red lines); and (<b>b</b>) the relative differences of precipitation in 1990 and 2006.</p> "> Figure 6
<p>The correlations and similarities of precipitation patterns in the target years, from 1991 to 1999, and reference years from 2000 to 2013. The X-axis indicated the period along the whole year; the Y-axis indicated the temporal scales in day; the 95% confidence levels were shown as the thick solid lines; the color bar indicated strength of correlation.</p> "> Figure 7
<p>Spatial patterns of mean annual precipitation over the TP from 1990 to 1999 derived from (<b>a</b>) Climate Hazards group Infrared Precipitation with Stations (CHIRPS) at ~5 km resolution, (<b>b</b>) downscaled precipitation estimates (DS) without rain gauge calibration at ~1 km resolution, (<b>c</b>) DS with rain gauge calibration at ~1 km resolution.</p> "> Figure 8
<p>Scatterplots of the validations between ground observations over the TP from 1990 to 1999 and (<b>a</b>) the CHIRPS data at ~5 km resolution; (<b>b</b>) the DS without gauge calibration at ~1 km resolution; (<b>c</b>) the DS with gauge calibration at ~1 km resolution.</p> "> Figure 9
<p>Spatial distributions of (<b>a</b>) mean annual precipitation obtained from CHIRPS (left column), DS without gauge calibration (the central column) and DS with gauge calibration (right column), (<b>b</b>) R<sup>2</sup>, (<b>c</b>) bias, (<b>d</b>) RMSE, (<b>e</b>) NSE, of CHIRPS, DS without gauge calibration and DS with gauge calibration, against ground observations, from 1990 to 1999, over the TP.</p> "> Figure 10
<p>Mean annual precipitation volumes based on ground observations, and precipitation estimates obtained from CHIRPS and DS, from 1990 to 1999, at specific stations in both regions A and B.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Ground Observations
2.2.2. Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) Dataset
2.2.3. The Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
2.2.4. Normalized Difference Vegetation Index (NDVI) Dataset
2.2.5. Land Surface Temperature (LST) Datasets
2.2.6. Topography Datasets
2.3. Methods
2.3.1. Wavelet Coherence
2.3.2. Cubist
2.3.3. Mann–Kendall Trend Test
2.3.4. Calibration and Validation
2.3.5. Main Steps to Retrospectively Obtain Precipitation Estimates (~1 km) in the 1990s
- (1)
- Wavelet coherence was firstly applied to detect the inherent similarities and correlations of precipitation between the target time periods, from 1990 to 1999, and reference time periods, from 2000 to 2013, at different temporal scales based on ground observations (Figure 2). The target year and the corresponding reference year were determined when the MWC and PASC values were largest.
- (2)
- All land surface characteristics, including annual mean LST data, annual mean NDVI and topographical parameters, were aggregated to 0.25 from corresponding data at their original spatial resolutions, from 2000 to 2013. Then, the Cubist models were built between TMPA data and land surface variables in the reference years at a spatial resolution of 0.25.
- (3)
- In the target years from 1990 to 1999, the land surface variables at ~1 km were firstly obtained. In terms of NDVI, we interpolated the GIMMS NDVI (1/12°) into those at ~1 km using simple spline tension interpolator, which was typically suitable for regularly-spaced data [7], in this study. The gridded GIMMS NDVI data had been converted into those in point-based format, before the interpolations were conducted in ArcGIS 10.2 software (https://www.esri.com/en-us/home). The DS were obtained by applying the Cubist models generated in step (2), in the corresponding reference years determined in step (1), on the land surface variables in the target years (Figure 2).
- (4)
- The calibration data was used to correct the DS, in the target years, obtained in step (3). At the beginning, the point-based ratios, by comparing the ground observations to DS, were interpolated into gridded estimates (~1 km) using the ordinary kriging technique [13]. Moreover, the final DS with gauge calibrations were obtained by multiplying the gridded ratios by the DS without gauge calibration obtained in step (3).
- (5)
- The performances of DS at ~1 km resolution were assessed through validation stations. Meanwhile, the performance of CHIRPS was also evaluated through the same validation stations and compared with those of the DS with/without gauge calibration (Figure 2).
3. Results
3.1. The Trends and Mutation of Precipitation over the Tibetan Plateau (TP)
3.2. Inter-Annual Correlations and Similarities of Precipitation Patterns
3.3. Retrospectively Downscaled Results and Validations
3.4. Comparisons of Precipitation Estimates at Specific Stations
4. Discussion
4.1. Improvements and Limations of the Framework
4.2. Possible Applications of the Retrospectively Downscaled Results in Related Fields
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muller, C.J.; O’Gorman, P.A. An energetic perspective on the regional response of precipitation to climate change. Nat. Clim. Chang. 2011, 1, 266–271. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nat. News 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef] [3.0.CO;2-Y/pdf" target='_blank'>Green Version]
- Zhang, D.; Huang, J.; Guan, X.; Chen, B.; Zhang, L. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 64–71. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Kyriakidis, P.C.; Kim, J.; Miller, N.L. Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteorol. 2001, 40, 1855–1877. [Google Scholar] [CrossRef]
- Ma, Z.; Tan, X.; Yang, Y.; Chen, X.; Kan, G.; Ji, X.; Lu, H.; Long, J.; Cui, Y.; Hong, Y. The First Comparisons of IMERG and the Downscaled Results Based on IMERG in Hydrological Utility over the Ganjiang River Basin. Water 2018, 10, 1392. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Teng, H.; Shi, Z.; Ma, Z.; Li, Y. Estimating spatially downscaled rainfall by regression kriging using TRMM precipitation and elevation in Zhejiang Province, southeast China. Int. J. Remote Sens. 2014, 35, 7775–7794. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140. [Google Scholar] [CrossRef]
- Chen, F.R.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote Sens. 2015, 35, 3074–3093. [Google Scholar] [CrossRef]
- Fang, J.; Du, J.; Xu, W.; Shi, P.J.; Li, M.; Ming, X.D. Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Adv. Water Resour. 2013, 61, 42–50. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L. Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial Variables Over the Tibetan Plateau From 2001 to 2012. Mt. Res. Dev. 2015, 35, 180–194. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, Z.; Zhou, Y.; Xu, J.; Yu, W.; Yang, Y. A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed. Remote Sens. Environ. 2017, 200, 378–395. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, Y.; Hu, B.; Liang, Z.; Shi, Z. Downscaling annual precipitation with TMPA and land surface characteristics in China. Int. J. Climatol. 2017, 37, 5107–5119. [Google Scholar] [CrossRef]
- Vachaud, G.; De Silans, A.P.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Biswas, A.; Si, B.C. Scales and locations of time stability of soil water storage in a hummocky landscape. J. Hydrol. 2011, 408, 100–112. [Google Scholar] [CrossRef]
- Sang, Y.F. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring. U.S. Geol. Surv. Data Ser. 2014, 832, 4. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. Trends in vegetation activity and their climatic correlates: China 1982 to 1998. Int. J. Remote Sens. 2004, 25, 5669–5689. [Google Scholar] [CrossRef]
- Evans, K.L.; James, N.A.; Gaston, K.J. Abundance, species richness and energy availability in the North American avifauna. Glob. Ecol. Biogeogr. 2006, 15, 372–385. [Google Scholar] [CrossRef]
- Grist, J.; Nicholson, S.E.; Mpolokang, A. On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana. J. Arid Environ. 1997, 35, 195–214. [Google Scholar] [CrossRef]
- Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. J. Geophys. Res. Atmospheres 1997, 102, 16697–16713. [Google Scholar] [CrossRef] [Green Version]
- Atitar, M.; Sobrino, J.A. A split-window algorithm for estimating LST from Meteosat 9 data: Test and comparison with in situ data and MODIS LSTs. IEEE Geosci. Remote Sens. Lett. 2009, 6, 122–126. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Correcting AVHRR long term data record V3 estimated LST from orbital drift effects. Remote Sens. Environ. 2012, 123, 207–219. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Si, B.C.; Biswas, A.; Chau, H.W. Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrol. Process. 2017, 31, 3697–3707. [Google Scholar] [CrossRef]
- Zhao, R.; Biswas, A.; Zhou, Y.; Zhou, Y.; Shi, Z.; Li, H. Identifying localized and scale-specific multivariate controls of soil organic matter variations using multiple wavelet coherence. Sci. Total Environ. 2018, 643, 548–558. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; WMO Technical Note, No. 415; WMO: Geneva, Switzerland, 1990. [Google Scholar]
- Matyasovszky, I. Detecting abrupt climate changes on different time scales. Theor. Appl. Climatol. 2011, 105, 445–454. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2014, 138, 73–90. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos. Res. 2013, 132–133, 375–398. [Google Scholar] [CrossRef]
- Tian, Y.; Huffman, G.J.; Adler, R.F.; Tang, L.; Sapiano, M.; Maggioni, V.; Wu, H. Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett. 2013, 40, 2060–2065. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Zhou, L.Q.; Yu, W.; Yang, Y.Y.; Teng, H.F.; Shi, Z. Improving TMPA 3B43 V7 Data Sets Using Land-Surface Characteristics and Ground Observations on the Qinghai–Tibet Plateau. IEEE Geosci. Remote Sens. Lett. 2018, 99, 1–5. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; de Lourdes, M.; et al. Digital soil map of the world. Science 2009, 325, 680–681. [Google Scholar] [CrossRef]
- Klopfenstein, S.T.; Hirmas, D.R.; Johnson, W.C. Relationships between soil organic carbon and precipitation along a climosequence in loess-derived soils of the Central Great Plains, USA. Catena 2015, 133, 25–34. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, Y.Q.; Chiew, F.H.S.; McVicar, T.R.; Zhang, L.; Li, H.X.; Qin, G.H. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau. Nat. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, Y.; Peng, J.; Chen, Q.; Wan, D.; He, K.; Shi, Z.; Li, H. Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings. Int. J. Remote Sens. 2018, 39, 3891–3907. [Google Scholar] [CrossRef]
Mean Wavelet Coherence (MWC) | Percent Area of Significant Coherence (PASC) (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Temporal Scales | Temporal Scales | |||||||||
<8 day | 8–32 day | 32–64 day | >64 day | All Scales | <8 day | 8–32 day | 32–64 day | >64 day | All Scales | |
1990–2000 | 0.34 | 0.41 | 0.42 | 0.53 | 0.42 | 12.07 | 18.40 | 16.71 | 5.55 | 14.93 |
1990–2001 | 0.31 | 0.33 | 0.29 | 0.42 | 0.34 | 8.80 | 8.12 | 5.98 | 5.33 | 7.60 |
1990–2002 | 0.29 | 0.33 | 0.22 | 0.36 | 0.30 | 7.01 | 4.68 | 1.32 | 0.00 | 4.10 |
1990–2003 | 0.28 | 0.27 | 0.32 | 0.64 | 0.37 | 7.17 | 1.49 | 9.19 | 20.21 | 11.05 |
1990–2004 | 0.24 | 0.22 | 0.42 | 0.31 | 0.30 | 3.63 | 1.12 | 17.58 | 1.47 | 4.85 |
1990–2005 | 0.28 | 0.28 | 0.38 | 0.43 | 0.34 | 7.46 | 3.22 | 2.22 | 0.00 | 3.91 |
1990–2006 | 0.34 | 0.39 | 0.53 | 0.70 | 0.49 | 10.00 | 15.89 | 36.22 | 40.00 | 27.02 |
1990–2007 | 0.38 | 0.36 | 0.43 | 0.51 | 0.42 | 15.58 | 7.36 | 9.26 | 4.66 | 10.63 |
1990–2008 | 0.33 | 0.32 | 0.32 | 0.31 | 0.32 | 8.88 | 7.91 | 8.54 | 0.00 | 7.10 |
1990–2009 | 0.34 | 0.34 | 0.29 | 0.46 | 0.36 | 8.38 | 6.79 | 3.88 | 4.94 | 7.44 |
1990–2010 | 0.31 | 0.32 | 0.42 | 0.21 | 0.31 | 5.45 | 8.63 | 12.55 | 0.00 | 6.81 |
1990–2011 | 0.38 | 0.34 | 0.35 | 0.41 | 0.37 | 14.58 | 8.31 | 1.49 | 0.00 | 7.65 |
1990–2012 | 0.34 | 0.33 | 0.46 | 0.52 | 0.41 | 10.58 | 11.49 | 25.00 | 4.61 | 12.75 |
1990–2013 | 0.32 | 0.39 | 0.38 | 0.32 | 0.35 | 8.98 | 12.75 | 13.97 | 0.00 | 9.57 |
MWC | PASC (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Temporal Scales | Temporal Scales | |||||||||
<8 day | 8–32 day | 32–64 day | >64 day | All Scales | <8 day | 8–32 day | 32–64 day | >64 day | All Scales | |
1991–2013 | 0.31 | 0.38 | 0.47 | 0.79 | 0.48 | 7.93 | 11.27 | 17.53 | 42.52 | 23.49 |
1992–2012 | 0.42 | 0.29 | 0.18 | 0.79 | 0.42 | 19.66 | 10.34 | 0.20 | 38.68 | 23.14 |
1993–2010 | 0.29 | 0.35 | 0.44 | 0.82 | 0.47 | 6.91 | 13.90 | 16.28 | 43.66 | 20.19 |
1994–2013 | 0.34 | 0.35 | 0.41 | 0.83 | 0.48 | 11.91 | 14.57 | 18.28 | 39.47 | 25.02 |
1995–2012 | 0.33 | 0.35 | 0.52 | 0.96 | 0.54 | 9.23 | 14.29 | 31.13 | 50.00 | 29.43 |
1996–2008 | 0.34 | 0.32 | 0.25 | 0.81 | 0.43 | 10.82 | 8.38 | 0.82 | 39.16 | 19.58 |
1997–2006 | 0.34 | 0.38 | 0.39 | 0.88 | 0.50 | 10.64 | 12.77 | 16.61 | 44.73 | 25.30 |
1998–2009 | 0.32 | 0.36 | 0.37 | 0.89 | 0.48 | 7.31 | 8.53 | 12.38 | 45.61 | 22.37 |
1999–2011 | 0.34 | 0.40 | 0.66 | 0.80 | 0.55 | 11.06 | 21.06 | 34.53 | 43.69 | 27.58 |
1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
CHIRPS | R2 | 0.42 | 0.49 | 0.49 | 0.53 | 0.50 | 0.62 | 0.41 | 0.56 | 0.61 | 0.58 |
Bias (%) | 5.65 | 5.96 | 4.19 | 5.72 | 2.81 | 3.30 | 4.20 | 3.65 | 7.62 | 4.29 | |
Nash–Sutcliffe efficiency (NSE) | 0.26 | 0.48 | 0.49 | 0.52 | 0.48 | 0.62 | 0.35 | 0.59 | 0.55 | 0.41 | |
Root mean square error (RMSE) (mm) | 255.12 | 214.09 | 202.13 | 213.36 | 181.41 | 185.11 | 212.75 | 162.42 | 207.95 | 186.39 | |
DS without calibration | R2 | 0.77 | 0.72 | 0.79 | 0.73 | 0.78 | 0.70 | 0.72 | 0.74 | 0.75 | 0.71 |
Bias (%) | 19.05 | 18.39 | 15.58 | 14.59 | 15.89 | 15.63 | 10.33 | 12.16 | 18.87 | 10.73 | |
NSE | 0.63 | 0.56 | 0.75 | 0.74 | 0.74 | 0.60 | 0.69 | 0.72 | 0.49 | 0.65 | |
RMSE (mm) | 180.34 | 195.74 | 141.00 | 157.26 | 141.66 | 191.28 | 147.98 | 146.49 | 222.87 | 148.43 | |
DS with calibration | R2 | 0.83 | 0.79 | 0.84 | 0.81 | 0.85 | 0.79 | 0.80 | 0.83 | 0.84 | 0.79 |
Bias (%) | 14.29 | 13.79 | 11.69 | 10.94 | 5.41 | 11.72 | 7.74 | 1.62 | 14.15 | 8.05 | |
NSE | 0.79 | 0.75 | 0.86 | 0.85 | 0.79 | 0.77 | 0.82 | 0.80 | 0.71 | 0.80 | |
RMSE (mm) | 135.26 | 146.81 | 115.75 | 117.95 | 114.39 | 143.47 | 110.99 | 119.87 | 167.16 | 111.33 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Ma, Z.; Zhao, R.; Biswas, A.; Teng, H.; Xu, J.; Yu, W.; Shi, Z. A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau. Remote Sens. 2018, 10, 1974. https://doi.org/10.3390/rs10121974
He K, Ma Z, Zhao R, Biswas A, Teng H, Xu J, Yu W, Shi Z. A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau. Remote Sensing. 2018; 10(12):1974. https://doi.org/10.3390/rs10121974
Chicago/Turabian StyleHe, Kang, Ziqiang Ma, Ruiying Zhao, Asim Biswas, Hongfen Teng, Junfeng Xu, Wu Yu, and Zhou Shi. 2018. "A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau" Remote Sensing 10, no. 12: 1974. https://doi.org/10.3390/rs10121974
APA StyleHe, K., Ma, Z., Zhao, R., Biswas, A., Teng, H., Xu, J., Yu, W., & Shi, Z. (2018). A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau. Remote Sensing, 10(12), 1974. https://doi.org/10.3390/rs10121974