Urbanization and Spillover Effect for Three Megaregions in China: Evidence from DMSP/OLS Nighttime Lights
<p>Geographical location (<b>a</b>) and topographical setting of Beijing-Tianjin-Hebei (<b>b</b>), Yangtze River Delta (<b>c</b>), and Pearl River Delta (<b>d</b>).</p> "> Figure 2
<p>Geographical distribution of calibrated light intensity in 2013 (upper row: <b>a1</b>–<b>c1</b>), 22 years linear regression tendency of light intensity (from 1992 to 2013 in <span class="html-italic">DN/yr</span>, second row: <b>a2</b>–<b>c2</b>), and statistics of linear regression tendency for individual cities in both administrative (third row: <b>a3</b>–<b>c3</b>) and megaregion (bottom row: <b>a4</b>–<b>c4</b>) boundaries.</p> "> Figure 3
<p>Geographical distribution of five classes of urbanization (<span class="html-italic">magnitude, development</span>)-diagram of urbanization on pixel scale (upper row: <b>a1</b>–<b>c1</b>): (<b>1</b>) red (<span class="html-italic">high urbanization, fast development</span>), (<b>2</b>) orange (<span class="html-italic">high urbanization, slow development</span>), (<b>3</b>) yellow (<span class="html-italic">moderate urbanization, fast development</span>), (<b>4</b>) beige (<span class="html-italic">moderate urbanization, slow development</span>), and (<b>5</b>) green (<span class="html-italic">low urbanization, slow development</span>). Related city scale statistics (defined by administrative boundary) are shown in the middle row (<b>a2</b>–<b>c2</b>). Statistics comparison within two administrative boundaries (<b>d</b>) and megaregions (<b>e</b>) are shown in bottom in percentage.</p> "> Figure 4
<p>Geographical distribution of urbanization expansion employing the calibrated spatiotemporally continuous lighted areas (DN ≥ 12) in upper row (<b>a1</b>–<b>c1</b>): 1992 (green), 2003 (yellow) and 2013 (red). Gravity Center trajectories (from 1992 to 2013, middle row: <b>a2</b>–<b>c2</b>) and the related Weighted Standard Deviational Ellipses (bottom row: <b>a3</b>–<b>c3</b>) in megaregion scale combined with gray megaregions as background. Note that circles represent the trajectory of the annual Gravity Centers of nighttime lights and the triangles show Geometric Center in 2013.</p> "> Figure 5
<p>Total distance (Gravity Distance) between the Gravity Center of the megaregion and the Gravity center of internal cities for the three megaregions from 1992 to 2013. The straight lines and corresponding values mean the total distance (Geometric Distance) between the Geometric Center of megaregion and the Geometric Center of inner cities for the three megaregions in 2013.</p> "> Figure A1
<p>The Weighted Standard Deviational Ellipses (1992, 2003, 2013, left column) and Gravity Center trajectories (from 1992 to 2013, right column) in individual city scale. Note that circles represent the trajectory of the annual Gravity Centers of nighttime lights and the triangles show Geometric Center in 2013.</p> ">
Abstract
:1. Introduction
2. Data and Methods of Analysis
2.1. Data Pre-Processing
2.2. Methods of Analyses
3. Results and Discussion
3.1. Light Intensity Tendency based Development Changes
3.2. Urban Development: A Standard Deviational Ellipse Analysis
3.3. Spillover Effect of Megaregion on Surrounding Cities
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jordan, M.; Meyer, W.B.; Kates, R.W.; Clark, W.C.; Richards, J.F.; Turner, B.L.; Mathews, J.T. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years; CUP Archive: Cambridge, UK, 1990. [Google Scholar]
- UN. World Urbanization Prospects: The 2009 Revision; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2010. [Google Scholar]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C. Urbanization and the thermal environment of Chinese and US-American cities. Sci. Total Environ. 2017, 589, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Zhou, W. Global urbanization as a shifting context for applying ecological science toward the sustainable city. Ecosyst. Health Sustain. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.; Hoyler, M. Megaregions: Globalization a New Urban Form? Edward Elgar Publishing: Cheltenham, UK, 2015; pp. 1–28. [Google Scholar]
- Dewar, M.; Epstein, D. Planning for “Megaregions” in the United States. J. Plan. Lit. 2007, 22, 108–124. [Google Scholar] [CrossRef]
- Su, S.; Liu, Z.; Xu, Y.; Li, J.; Pi, J.; Weng, M. China’s megaregion policy: Performance evaluation framework, empirical findings and implications for spatial polycentric governance. Land Use Policy 2017, 63, 1–19. [Google Scholar] [CrossRef]
- Osman, T.; Divigalpitiya, P.; Arima, T. Driving factors of urban sprawl in Giza Governorate of Greater Cairo Metropolitan Region using AHP method. Land Use Policy 2016, 58, 21–31. [Google Scholar] [CrossRef]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, S.; Yu, W.; Wang, J.; Wang, W. Effects of Urban Expansion on Forest Loss and Fragmentation in Six Megaregions, China. Remote Sens. 2017, 9, 991. [Google Scholar] [CrossRef]
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P.C. The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 2008, 6, 264–272. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Gottmann, J. Megalopolis: The Urbanized Northeastern Seaboard of the United States; M.I.T. Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Gottmann, J. Megalopolis or the Urbanization of the Northeastern Seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Baigent, E. Patrick Geddes, Lewis Mumford and Jean Gottmann: Divisions over ‘megalopol is’. Prog. Hum. Geogr. 2004, 28, 687–700. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J.F. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Ju, Y.; Dronova, I.; Ma, Q.; Zhang, X. Analysis of urbanization dynamics in mainland China using pixel-based night-time light trajectories from 1992 to 2013. Int. J. Remote Sens. 2017, 38, 6047–6072. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhou, W. The Spatiotemporal Pattern of Urban Expansion in China: A Comparison Study of Three Urban Megaregions. Remote Sens. 2017, 9, 45. [Google Scholar] [CrossRef]
- Zhou, W.; Jiao, M.; Yu, W.; Wang, J. Urban sprawl in a megaregion: A multiple spatial and temporal perspective. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Small, C.; Elvidge, C.D.; Balk, D.; Montgomery, M. Spatial scaling of stable night lights. Remote Sens. Environ. 2011, 115, 269–280. [Google Scholar] [CrossRef]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.S.; Zhang, Z.X.; Liu, F. Monitoring Population Evolution in China Using Time-Series DMSP/OLS Nightlight Imagery. Remote Sens. 2018, 10, 194. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Wang, C.; Zhang, H.; Liao, J.; Ye, Y.; Wang, C. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, southern China. GISci. Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics: A Case Study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.N.; Peng, J.; Liu, Y.; Du, Y.; Li, H.; Wu, J. Mapping Development Pattern in Beijing-Tianjin-Hebei Urban Agglomeration Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 760. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Jiang, R.; Wang, K.; Huang, L.; Ye, Z.; Gan, M.; Ji, B. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 24–34. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Griffith, D.A. Theory of Spatial Statistics; Springer: Dordrecht, The Netherlands, 1984; pp. 3–15. [Google Scholar]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Wang, X.; Feng, X.; Zhang, X.; Yang, Y. Detecting China’s Urban Expansion Over the Past Three Decades Using Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Jia, T.; Chen, K.; Wang, J. Characterizing the Growth Patterns of 45 Major Metropolitans in Mainland China Using DMSP/OLS Data. Remote Sens. 2017, 9, 571. [Google Scholar] [CrossRef]
- Krings, G.; Calabrese, F.; Ratti, C.; Blondel, V.D. Urban gravity: A model for inter-city telecommunication flows. J. Stat. Mech. Theory Exp. 2009, 2009, L07003. [Google Scholar] [CrossRef]
- Haynes, K.E.; Fotheringham, A.S. Gravity and spatial interaction models. In Scientific Geography; Regional Research Institute, West Virginia University: Morgantown, MV, USA, 1985. [Google Scholar]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C.; Zhu, X. Urbanization and climate change: Insights from eco-hydrological diagnostics. Sci. Total Environ. 2018, 647, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Jenerette, G.D.; Potere, D. Global analysis and simulation of land-use change associated with urbanization. Landsc. Ecol. 2010, 25, 657–670. [Google Scholar] [CrossRef]
- Xiao, H.; Kopecká, M.; Guo, S.; Guan, Y.; Cai, D.; Zhang, C.; Zhang, X.; Yao, W. Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid. Sustainability 2018, 10, 260. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
Parameter | Equation | |
---|---|---|
Gravity Center | (2) | |
Azimuth angle | (3) | |
Major (minor) axis | (4) | |
Gravity Distance | (5) |
Beijing-Tianjin-Hebei | Yangtze River Delta | Pearl River Delta | |||
---|---|---|---|---|---|
City | (Magnitude, Development) | City | (Magnitude, Development) | City | (Magnitude, Development) |
Beijing | (44.07, 1.03) | Shanghai | (47.99, 1.27) | Guangzhou | (45.07, 1.08) |
Tianjin | (36.97, 0.95) | Suzhou | (49.34, 1.82) | Zhongshan | (53.01, 1.35) |
Tangshan | (28.28, 0.86) | Wuxi | (46.17, 1.54) | Dongguan | (58.51, 1.23) |
Qinhuangdao | (32.80, 0.82) | Changzhou | (41.97, 1.43) | Foshan | (51.02, 1.27) |
Langfang | (28.92, 0.77) | Jiaxing | (29.37, 1.06) | Shenzhen | (54.38, 0.83) |
Baoding | (24.44, 0.61) | Ningbo | (23.03, 0.95) | Zhuhai | (36.62, 0.62) |
Cangzhou | (24.97, 0.59) | Zhenjiang | (29.48, 0.88) | Huizhou | (15.02, 0.58) |
Nanjing | (27.91, 0.78) | Jiangmen | (14.57, 0.44) | ||
Taizhou | (23.98, 0.72) | Zhaoqing | (6.57, 0.22) | ||
Nantong | (24.19, 0.66) | Hong Kong | (53.97, 0.15) | ||
Yangzhou | (20.63, 0.65) | ||||
Shaoxing | (16.06, 0.64) | ||||
Huzhou | (17.65, 0.63) | ||||
Hangzhou | (12,68, 0.48) |
Megaregion | Year | Major Axis (km) | Minor Axis (km) | Major Axis/Minor axis | Rotation Angle (°) |
---|---|---|---|---|---|
Beijing-Tianjin-Hebei | 1992 | 140.52 | 80.20 | 1.75 | 88.59 |
2003 | 138.31 | 82.80 | 1.67 | 84.36 | |
2013 | 144.42 | 82.31 | 1.75 | 79.81 | |
Yangtze River Delta | 1992 | 150.42 | 81.78 | 1.84 | 120.64 |
2003 | 145.81 | 88.73 | 1.64 | 129.90 | |
2013 | 145.48 | 93.92 | 1.55 | 133.29 | |
Pearl River Delta | 1992 | 78.14 | 46.88 | 1.67 | 99.38 |
2003 | 78.92 | 48.45 | 1.63 | 95.36 | |
2013 | 86.70 | 53.63 | 1.61 | 91.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Guo, S.; Guan, Y.; Cai, D.; Zhang, C.; Fraedrich, K.; Xiao, H.; Tian, Z. Urbanization and Spillover Effect for Three Megaregions in China: Evidence from DMSP/OLS Nighttime Lights. Remote Sens. 2018, 10, 1888. https://doi.org/10.3390/rs10121888
Zhang X, Guo S, Guan Y, Cai D, Zhang C, Fraedrich K, Xiao H, Tian Z. Urbanization and Spillover Effect for Three Megaregions in China: Evidence from DMSP/OLS Nighttime Lights. Remote Sensing. 2018; 10(12):1888. https://doi.org/10.3390/rs10121888
Chicago/Turabian StyleZhang, Xiaoxin, Shan Guo, Yanning Guan, Danlu Cai, Chunyan Zhang, Klaus Fraedrich, Han Xiao, and Zhuangzhuang Tian. 2018. "Urbanization and Spillover Effect for Three Megaregions in China: Evidence from DMSP/OLS Nighttime Lights" Remote Sensing 10, no. 12: 1888. https://doi.org/10.3390/rs10121888
APA StyleZhang, X., Guo, S., Guan, Y., Cai, D., Zhang, C., Fraedrich, K., Xiao, H., & Tian, Z. (2018). Urbanization and Spillover Effect for Three Megaregions in China: Evidence from DMSP/OLS Nighttime Lights. Remote Sensing, 10(12), 1888. https://doi.org/10.3390/rs10121888