Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic
<p>All collocated CERES-MISR instantaneous samples of near-nadir SW BRFs and SW albedos for (<b>a</b>,<b>b</b>) CERES overcast ocean scenes; (<b>c</b>,<b>d</b>) CERES overcast sea ice scenes; (<b>e</b>,<b>f</b>) CERES overcast fresh snow scenes; and (<b>g</b>,<b>h</b>) CERES overcast permanent snow scenes. Bin size is 0.01 for both BRF and albedo plots.</p> "> Figure 2
<p>Distribution of regional (1° × 1°) overcast albedo RMS differences for (<b>a</b>) ocean and (<b>b</b>) snow/ice.</p> "> Figure 3
<p>Comparison of CERES and MISR instantaneous overcast albedos over the Arctic ocean for (<b>a</b>,<b>c</b>,<b>e</b>) consistent scene type, and (<b>b</b>,<b>d</b>,<b>f</b>) inconsistent scene type for solar zenith angle (SZA) ∈ [40°, 90°], [50°, 60°), and [80°, 90°).</p> "> Figure 4
<p>Same as <a href="#remotesensing-10-01882-f003" class="html-fig">Figure 3</a> but for (<b>a</b>,<b>b</b>) overcast fresh snow with solar zenith angle (SZA) between 40° and 50°, (<b>c</b>,<b>d</b>) overcast permanent snow with SZA between 50° and 60°, and (<b>e</b>,<b>f</b>) overcast sea ice with SZA between 60° and 70°.</p> "> Figure 5
<p>Stacked sample percentage (%) of MISR scene identifications for (<b>a</b>) CERES overcast ocean, (<b>b</b>) overcast sea ice, (<b>c</b>) overcast permanent snow, and (<b>d</b>) overcast fresh snow based on all three-year collocated data.</p> "> Figure 6
<p>Sample distribution of collocated (20 km)<sup>2</sup> CERES-MISR samples for six MISR cloud masks (Albedo Cloud Designation (CD), Stereoscopically Derived Cloud Mask (SDCM) new, Angular Signature Cloud Mask (ASCM), Radiometric Camera-by-Camera Cloud Mask (RCCM)-An, Consensus, Best-CF) over CERES overcast (<span class="html-italic">f ></span> 99%), and clear (<span class="html-italic">f <</span> 0.1%<span class="html-italic">)</span> scenes by treating No Retrieval (NR) cloud mask values as clear and as cloudy. Note that both ASCM and RCCM are terrain-referenced.</p> "> Figure 7
<p>Relative RMS differences (%) of overcast TOA albedo retrieval algorithms between the CERES and MISR as a function of solar zenith angle ranges.</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. CERES
2.2. MISR
3. Instantaneous Albedo Collocation and Calculation
4. Results
4.1. Instantaneous SW Albedo Comparison
4.1.1. Overcast Ocean
4.1.2. Overcast Snow/Ice
4.2. Scene Classification Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J. The albedo of Earth: The Albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Harrison, E.F.; Cess, R.D.; King, M.D.; Randall, D.A. Mission to Planet Earth: Role of Clouds and Radiation in Climate. Bull. Am. Meteorol. Soc. 1995, 76, 2125–2153. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A. Changes in Earth’s Albedo Measured by Satellite. Science 2005, 308, 825. [Google Scholar] [CrossRef] [PubMed]
- Hassol, S.J. Impacts of a Warming Arctic: Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004; ISBN 978-0-521-61778-9. [Google Scholar]
- Pistone, K.; Eisenman, I.; Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 2014, 111, 3322–3326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Liang, S.; Wang, D.; Zhou, Y.; Jia, A. Long-term record of top-of-atmosphere albedo over land generated from AVHRR data. Remote Sens. Environ. 2018, 211, 71–88. [Google Scholar] [CrossRef]
- Porter, D.F.; Cassano, J.J.; Serreze, M.C.; Kindig, D.N. New estimates of the large-scale Arctic atmospheric energy budget. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-S.; Kim, B.-M.; Hur, S.-K.; Kim, S.-J.; Kim, J.-H.; Ho, C.-H. Connecting early summer cloud-controlled sunlight and late summer sea ice in the Arctic: Arctic cloud, sunlight, and sea ice. J. Geophys. Res. Atmos. 2014, 119, 11087–11099. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.-R.; Choi, Y.-S.; Kim, W.; Kim, H.-S. Development of statistical seasonal prediction models of Arctic Sea Ice concentration using CERES absorbed solar radiation. Asia-Pac. J. Atmos. Sci. 2016, 52, 467–477. [Google Scholar] [CrossRef]
- Zhan, Y.; Davies, R. September Arctic sea ice extent indicated by June reflected solar radiation. J. Geophys. Res. Atmos. 2017, 122, 2194–2202. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N.; Doelling, D.R. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation. J. Atmos. Ocean. Technol. 2007, 24, 564–584. [Google Scholar] [CrossRef]
- Loeb, N.G.; Loukachine, K.; Manalo-Smith, N.; Wielicki, B.A.; Young, D.F. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation. J. Appl. Meteorol. 2003, 42, 1748–1769. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech. 2015, 8, 3297–3313. [Google Scholar] [CrossRef]
- Loeb, N.G.; Sun, W.; Miller, W.F.; Loukachine, K.; Davies, R. Fusion of CERES, MISR, and MODIS measurements for top-of-atmosphere radiative flux validation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Kandel, R.; Viollier, M.; Raberanto, P.; Duvel, J.P.; Pakhomov, L.A.; Golovko, V.A.; Trishchenko, A.P.; Mueller, J.; Raschke, E.; Stuhlmann, R.; International ScaRaB Scientific Working Group (ISSWG). The ScaRaB Earth Radiation Budget Dataset. Bull. Am. Meteorol. Soc. 1998, 79, 765–783. [Google Scholar] [CrossRef] [Green Version]
- Harries, J.E.; Russell, J.E.; Hanafin, J.A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; et al. The Geostationary Earth Radiation Budget Project. Bull. Am. Meteorol. Soc. 2005, 86, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Davies, R.; Várnai, T.; Moroney, C.; Borel, C.; Gerstl, S.A.W.; Nelson, D.L. MISR Level 2 Top-of-Atmosphere Albedo Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-08.pdf (accessed on 23 November 2018).
- Sun, W.; Loeb, N.G.; Davies, R.; Loukachine, K.; Miller, W.F. Comparison of MISR and CERES top-of-atmosphere albedo. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Davies, R. Intercalibration of CERES, MODIS, and MISR reflected solar radiation and its application to albedo trends: Intercalibration: CERES, MODIS, and MISR. J. Geophys. Res. Atmos. 2016, 121, 6273–6283. [Google Scholar] [CrossRef]
- Kato, S. Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Ocean. Technol. 2005, 22, 338–351. [Google Scholar] [CrossRef]
- Suttles, J.T.; Green, R.N.; Minnis, P.; Smith, G.L.; Staylor, W.F.; Wielicki, B.A.; Walker, I.J.; Young, D.F.; Taylor, V.R.; Stowe, L.L. Angular Radiation Models for Earth-Atmosphere System (Volume I—Shortwave Radiation); NASA Langley Research Center: Hampton, VA, USA, 1988.
- Di Girolamo, L.; Várnai, T.; Davies, R. Apparent breakdown of reciprocity in reflected solar radiances. J. Geophys. Res. Atmos. 1998, 103, 8795–8803. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech. 2015, 8, 611–632. [Google Scholar] [CrossRef]
- Corbett, J.; Su, W. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models. Atmos. Meas. Tech. 2015, 8, 3163–3175. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Wu, D.L.; Lee, J.N. Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss: ARCTIC LOW CLOUD CHANGES. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Genkova, I.; Wilson, M.; Yang, Y.; Zhao, G.; Chapman, B.; Snodgrass, E.; Mazzoni, D.; Di Girolamo, L. The synergy of the MISR cloud masks for global cloud climatology. In Proceedings of the Remote Sensing of Clouds and the Atmosphere X, Bruges, Belgium, 19–22 September 2005. [Google Scholar]
- Diner, D.J.; Davies, R.; Di Girolamo, L.; Horvath, A.; Moroney, C.; Muller, J.-P.; Paradise, S.R.; Wenkert, D.; Zong, J. MISR Level 2 Cloud Detection and Classification Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-07.pdf (accessed on 23 November 2018).
- Diner, D.J.; Di Girolamo, L.; Clothiaux, E.E. MISR Level 1 Cloud Detection Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-06.pdf (accessed on 23 November 2018).
- Zhao, G.; Di Girolamo, L. A Cloud Fraction versus View Angle Technique for Automatic In-Scene Evaluation of the MISR Cloud Mask. J. Appl. Meteorol. 2004, 43, 860–869. [Google Scholar] [CrossRef]
- Yang, Y.; Di Girolamo, L.; Mazzoni, D. Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land. Remote Sens. Environ. 2007, 107, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, L.; Wilson, M.J. A first look at band-differenced angular signatures for cloud detection from MISR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1730–1734. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Moroney, C.; Davies, R.; Mazzoni, D.; Di Girolamo, L.; Moroney, C.; Davies, R.; Di Girolamo, L.; Mazzoni, D.; Moroney, C.; et al. MISR Level 2 Top-of- Atmosphere/Cloud Products Quality Statement. 2007. Available online: https://eosweb.larc.nasa.gov/PRODOCS/misr/Quality_Summaries/L2_Cloud_Products.html (accessed on 23 November 2018).
- Di Girolamo, L.; Davies, R. A Band-Differenced Angular Signature Technique for Cirms Cloud Detection. IEEE Trans. Geosci. Remote Sens. 1994, 32, 7. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Menzies, A.; Zhao, G.; Mueller, K.; Moroney, C.; Diner, D.J. MISR Level 3 Cloud Fraction by Altitude Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/MISR_CFBA_ATBD.pdf (accessed on 23 November 2018).
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef] [Green Version]
- Moroney, C.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. Personal communication, 2018.
- Stephens, G.L. Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes. J. Atmos. Sci. 1978, 35, 2123–2132. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Heygster, G.; Zhang, S. Comparison of CloudSat cloud liquid water paths in arctic summer using ground-based microwave radiometer. J. Ocean Univ. China 2010, 9, 333–342. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Stewart, J.S. Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent, Version 5. 2016. Available online: https://nsidc.org/data/NISE/versions/5 (accessed on 23 November 2018).
- Loeb, N.G.; Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Keyes, D.F.; Kato, S.; Manalo-Smith, N.; Wong, T. Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget. J. Clim. 2009, 22, 748–766. [Google Scholar] [CrossRef]
- Cox, S.J.; Stackhouse, P.W.; Gupta, S.K.; Mikovitz, J.C.; Zhang, T.; Hinkelman, L.M.; Wild, M.; Ohmura, A. The Nasa/Gewex Surface Radiation Budget Project: Overview and Analysis. Available online: http://ams.confex.com/ams/pdfpapers/112990.pdf (accessed on 23 November 2018).
- Zhang, Y. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Manalo-Smith, N.; Kato, S.; Miller, W.F.; Gupta, S.K.; Minnis, P.; Wielicki, B.A. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteorol. 2003, 42, 240–265. [Google Scholar] [CrossRef]
Instrument | Dataset | Purpose |
---|---|---|
CERES | CER_SSF_Terra-FM1-MODIS_Edition4A | albedo comparison |
CER_SSF_Terra-FM1-MODIS_Edition3A | ||
MISR | MISR_AM1_TC_ALBEDO_F05_0011 | |
MISR_AM1_TC_STEREO_F08_0017 | cloud mask consistency check | |
MISR_AM1_TC_CLOUD_F01_0001 | ||
MISR_AM1_GRP_RCCM_GM_F04_0025 | ||
MISR_AM1_TC_CLASSIFIERS_F07_0013 |
Parameter | CERES Value | MISR Value |
---|---|---|
Viewing zenith angle | ≤10° | ≤10° |
Cloud fraction | ≥99.9% | n/a |
Surface type | Open water, Permanent snow, Fresh snow, Sea ice | n/a |
Surface type percentage | 100% | n/a |
Unobscured percentage | n/a | ≥90% (An Camera) |
c0 | c1 | c2 | Number of Samples | R2 | ||
---|---|---|---|---|---|---|
[40°, 50°) | 0.0493 | 0.5782 | 0.1017 | 318240 | 5.2 | 0.98 |
[50°, 60°) | 0.0507 | 0.8565 | −0.1861 | 429684 | 5.2 | 0.98 |
[60°, 70°) | 0.0512 | 0.762 | −0.0884 | 238810 | 5.4 | 0.98 |
[70°, 80°) | 0.0471 | 0.2805 | 0.4128 | 325160 | 4.5 | 0.97 |
[80°, 90°) | 0.0505 | 0.1334 | 0.5518 | 185923 | 6.2 | 0.95 |
c0 | c1 | c2 | Number of Samples | R2 | ||
---|---|---|---|---|---|---|
[40°, 50°) | 0.036 | 0.5545 | 0.1681 | 9358 | 4.5 | 0.93 |
[50°, 60°) | 0.115 | 0.6389 | −0.0237 | 72292 | 4.6 | 0.82 |
[60°, 70°) | 0.1032 | 0.6383 | −0.015 | 166951 | 4.8 | 0.84 |
[70°, 80°) | 0.1014 | 0.5963 | 0.0157 | 68865 | 4.2 | 0.88 |
[80°, 90°) | 0.1253 | 0.5485 | −0.0076 | 3967 | 4.7 | 0.90 |
Consistent Scene Classification | |||||
Surface type | |||||
Ocean | 5.2 (1.7) | 4.9 (0.2) | 5.7 (1.0) | 7.4 (−0.5) | 14.7 (5.7) |
SI | 4.4 (−3.2) | 4.1 (1.9) | 4.9 (3.0) | 6.1 (3.2) | 16.6 (13.8) |
FS | 4.0 (0.5) | 4.9 (3.1) | 7.1 (4.5) | 8.7 (4.7) | 14.2 (10.9) |
PS | 6.6 (1.8) | 5.3 (4.2) | 7.1 (5.2) | 10.1 (8.0) | 20.4 (18.6) |
Inconsistent Scene Classification | |||||
Ocean | 11.9 (6.8) | 19.6 (13.2) | 16.5 (10.0) | 24.2 (12.6) | 31.7 (17.7) |
SI | 8.3 (−5.0) | 5.7 (1.6) | 6.4 (1.6) | 8.0 (2.1) | 18.0 (13.8) |
FS | 7.1 (-1.5) | 6.7 (1.8) | 9.5 (2.2) | 10.6 (3.6) | 17.2 (11.6) |
PS | 17.7 (−6.7) | 18.0 (−5.7) | 14.6 (−1.0) | 18.0 (−0.5) | 22.6 (9.2) |
CERES Surface Type | MISR Operational Snow/Ice Mask | MISR T6 | MISR T15 |
---|---|---|---|
Overcast ocean | 17.6 | 6.2 | 5.7 |
Overcast sea ice | 0.1 | 0.2 | 2.4 |
Overcast fresh snow | 10.8 | 13.1 | 24.9 |
Overcast permanent snow | 2.2 | 3.7 | 13.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Di Girolamo, L.; Davies, R.; Moroney, C. Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sens. 2018, 10, 1882. https://doi.org/10.3390/rs10121882
Zhan Y, Di Girolamo L, Davies R, Moroney C. Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sensing. 2018; 10(12):1882. https://doi.org/10.3390/rs10121882
Chicago/Turabian StyleZhan, Yizhe, Larry Di Girolamo, Roger Davies, and Catherine Moroney. 2018. "Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic" Remote Sensing 10, no. 12: 1882. https://doi.org/10.3390/rs10121882
APA StyleZhan, Y., Di Girolamo, L., Davies, R., & Moroney, C. (2018). Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sensing, 10(12), 1882. https://doi.org/10.3390/rs10121882