Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data
<p>(<b>a</b>) Special wooden construction for mounting the laser scanning above the flume frame. (<b>b</b>) Scanner view of the scene (looking downslope from the scanner).</p> "> Figure 2
<p>Sketch up for the testing scene.</p> "> Figure 3
<p>Workflow for detection and quantification of changes in the rock slopes.</p> "> Figure 4
<p>Local surface model for cloud-to-cloud distances: <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>2</mn> </msub> </mrow> </semantics></math> denote the Euclidean 3D distance.</p> "> Figure 5
<p>3D profiles for scanning, in which the transformation between raster image and 3D coordinates is illustrated: For example, assuming that the range for the current cell to the scanner center is 20 m, the vertical and horizontal angle are 1.00 rad and 1.00 rad, respectively, the horizontal and vertical angular resolutions are 0.0005 rad, and the pixel size in 2D space is set as 0.0025 rad × 0.0025 rad, the 3D coordinates for the four corners in 3D space are therefore <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>9.093</mn> <mo>,</mo> <mn>5.8385</mn> <mo>,</mo> <mn>16.8294</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>9.1075</mn> <mo>,</mo> <mn>5.8158</mn> <mo>,</mo> <mn>16.8294</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>9.0575</mn> <mo>,</mo> <mn>5.8158</mn> <mo>,</mo> <mn>16.8564</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>9.0721</mn> <mo>,</mo> <mn>5.7931</mn> <mo>,</mo> <mn>16.8564</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. The difference between <math display="inline"><semantics> <mrow> <mrow> <mo>‖</mo> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> <mo>‖</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>‖</mo> <mrow> <msub> <mi>B</mi> <mn>3</mn> </msub> <msub> <mi>B</mi> <mn>4</mn> </msub> </mrow> <mo>‖</mo> </mrow> </mrow> </semantics></math> is then estimated, which is equal to 0.0001 m.</p> "> Figure 6
<p>Scatter diagram for cloud to cloud distances (Slope 1).</p> "> Figure 7
<p>Scatter diagram for cloud to cloud distances (Slope 2).</p> "> Figure 8
<p>Comparison of raw point cloud (panels <b>a</b>,<b>c</b>) and range image (<b>b</b>,<b>d</b>) for both Slopes 1 and 2.</p> "> Figure 9
<p>Range image colored by range change for Slope 1.</p> "> Figure 10
<p>Range image colored by range change for Slope 2.</p> "> Figure 11
<p>Histogram of changes. Panels (<b>a</b>–<b>c</b>) are the histograms for Slope 1 in the directions along the slope, across the water flume direction, and vertically upwards against the slope plane, respectively. Panels (<b>d</b>–<b>f</b>) are the histograms for Slope 2 in the directions along the slope, across the water flume direction, and vertically upwards against the slope plane, respectively.</p> "> Figure 12
<p>Scatter diagram for Slope 1 colored by the change in the direction along the slope.</p> "> Figure 13
<p>Scatter diagram for Slope 2 colored by the change in the direction along the slope.</p> "> Figure 14
<p>Change profile along the slope length, i.e., along the flume direction. Panels (<b>a</b>,<b>b</b>) show the change in the directions along the slope length and vertically upwards against the slope plane for slope 1, while panels (<b>c</b>,<b>d</b>) show the change in the directions along the slope length and vertically upwards against the slope plane respectively for slope 2. Each value in the profile is obtained by averaging the changes (i.e., along the slope length or across the water flume) of cells in the same rows.</p> "> Figure 15
<p>Histogram (<b>a</b>) and scatter diagram (<b>b</b>) of volume change for Slope 1.</p> "> Figure 16
<p>Histogram (<b>a</b>) and scatter diagram (<b>b</b>) of volume change for Slope 2.</p> "> Figure 17
<p>Graphical illustration for the influences on the change profile generation induced by range image technique.</p> "> Figure 18
<p>Graph for the difference induced by range image technique against ranges.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wave Attack Simulation
2.1.2. Point Cloud Acquisition
2.2. Methodology
2.2.1. Registration of Two Epochs
2.2.2. Cloud-to-Cloud Distances
2.2.3. Range Image and Raster Image Creation
2.2.4. Quantification of Changes
- (1)
- Slope direction determination. As shown in Figure 1, the scanner is mounted at the middle along the cross section of the trunk. In such a case, the cells at the middle of the water flume along the slope direction have the same horizontal angle in the range image. Subsequently, the horizontal angle () representing the slope direction is obtained by averaging the horizontal angles of all cells in the range image. By connecting the cells with the same horizontal angle the slope direction is determined. Afterwards, the 3D points in the current cells representing the slope direction are extracted. Using the points in 3D space, the vectors for the direction are estimated by means of Principle Component Analysis (PCA), the principle of which is shown in Jolliffe [63] in detail. Here, we define the direction away from the scanner as the position direction (down-slope). A vector is used to represent the slope direction.
- (2)
- Direction across the water flume determination. Once the slope direction is determined, the next step is to determine the section direction. It is apparent that the section direction is perpendicular to the slope direction, so the key is to determine the position direction of the section. In our research, the direction from the left to the right from the viewpoint of the scanner is regarded as the positive direction of the section. A vector is used to represent the section direction.
- (3)
- Direction vertically upwards against the slope plane. The direction () is pointing upwards perpendicular to the slope plane determined by the vectors and , which is simply given as
2.2.5. Volume Change Estimation
- (1)
- and have the same vertical angle;
- (2)
- and have the same horizontal angle;
- (3)
- and have the same vertical angle; and
- (4)
- and have the same horizontal angle.
3. Results
3.1. Registration
3.2. Change Analysis Using Cloud-to-Cloud Distances
3.3. Range Image Technique for Quantifying Change Regions
3.4. Volume Change Estimation Results
3.5. Limitation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholson-Cole, S.A. Representing climate change futures: A critique on the use of images for visual communication. Comput. Environ. Urban Syst. 2005, 29, 255–273. [Google Scholar] [CrossRef]
- Hanley, M.E.; Hoggart, S.P.G.; Simmonds, D.J.; Bichot, A.; Colangelo, M.A.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng. 2014, 87, 136–146. [Google Scholar] [CrossRef]
- Emery, S.M.; Rudgers, J.A. Ecological assessment of dune restorations in the great lakes region. Restor. Ecol. 2010, 18, 184–194. [Google Scholar] [CrossRef]
- Ferdos, F.; Wörman, A.; Ekström, I. Hydraulic conductivity of coarse rockfill used in hydraulic structures. Transp. Porous Media 2015, 108, 367–391. [Google Scholar] [CrossRef]
- Rijn, L.C.V. Coastal erosion and control. Ocean Coast. Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Javadi, N.; Mahdi, T.F. Experimental investigation into rockfill dam failure initiation by overtopping. Nat. Hazards 2014, 74, 623–637. [Google Scholar] [CrossRef]
- Morán, R.; Toledo, M.Á. Research into protection of rockfill dams from overtopping using rockfill downstream toes. Revue Canadienne de Génie Civil 2011, 38, 1314–1326. [Google Scholar]
- Landry, C.E.; Keeler, A.G.; Kriesel, W. An economic evaluation of beach erosion management alternatives. Mar. Resour. Econ. 2003, 18, 105–127. [Google Scholar] [CrossRef]
- Firth, L.; Thompson, R.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.; Bozzeda, F.; Ceccherelli, V.; Colangelo, M.; Evans, A. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coast. Eng. 2014, 87, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Van Der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Delft, The Netherlands, 1988; Volume 396. [Google Scholar]
- Thompson, D.; Shuttler, R. Riprap design for wind wave attack. In A Laboratory Study in Random Waves; HR Wallingford: London, UK, 1975. [Google Scholar]
- Van der Meer, J.W.; Stam, C.-J.M. Wave runup on smooth and rock slopes of coastal structures. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 534–550. [Google Scholar] [CrossRef]
- Smith, W.G.; Kobayashi, N.; Kaku, S. Profile changes of rock slopes by irregular waves. In Proceedings of the Coastal Engineering, Venice, Italy, 4–9 October 1992; pp. 1559–1572. [Google Scholar]
- Allison, R.J.; Kimber, O.G. Modelling failure mechanisms to explain rock slope change along the isle of purbeck coast, UK. Earth Surf. Process. Landf. 1998, 23, 731–750. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Metzger, R.; Oppikofer, T.; Couture, R.; Derron, M.; Locat, J.; Turmel, D. New insight techniques to analyze rock-slope relief using dem and 3d-imaging cloud points: Coltop-3d software. In Rock Mechanics: Meeting Society’s Challenges and Demands; CRC Press: Boca Raton, FL, USA, 2007; pp. 61–68. [Google Scholar]
- Salvini, R.; Francioni, M.; Riccucci, S. The accuracy assessment of geomatics data used in rock slope stability analysis. In Proceedings of the European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy, 12–15 June 2012; pp. 105–106. [Google Scholar]
- Hofland, B.; Gent, M.V.; Raaijmakers, T.; Liefhebber, F. Damage evaluation using the damage depth. In Coastal Structures 2011: (in 2 Volumes); World Scientific: Singapore, 2013; pp. 812–823. [Google Scholar]
- Hofland, B.; Disco, M.; Van Gent, M. Damage characterization of rubble mound roundheads. In Proceedings of the CoastLab2014, Varna, Bulgaria, 29 September 2014. [Google Scholar]
- Raaijmakers, T.; Liefhebber, F.; Hofland, B.; Meys, P. Mapping of 3d-bathymetries and structures using stereophotography through an air-water-interface. Coastlab 2012, 12, 17–20. [Google Scholar]
- Tulsi, K.R. Three Dimensional Method for Monitoring Damage to Dolos Breakwaters. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Gent, M.R.A.V. Oblique wave attack on rubble mound breakwaters. Coast. Eng. 2014, 88, 43–54. [Google Scholar] [CrossRef]
- Maciñeira, E.G.; Burcharth, H.F. Stability of cube armoured roundheads exposed to long crested and short crested waves. Coast. Eng. 2016, 112, 99–112. [Google Scholar] [CrossRef]
- Vosselman, G.; Maas, H.-G. Airborne and Terrestrial Laser Scanning; Whittles Publishing: Dunbeath, UK, 2010. [Google Scholar]
- Shen, Y.; Lindenbergh, R.; Wang, J. Change analysis in structural laser scanning point clouds: The baseline method. Sensors 2017, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Nuttens, T.; Wulf, A.D.; Deruyter, G.; Stal, C.; Backer, H.D.; Schotte, K. Application of laser scanning for deformation measurements: A comparison between different types of scanning instruments. In Proceedings of the FIG Working Week: Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 6–10 May 2012; pp. 1–13. [Google Scholar]
- Pesci, A.; Teza, G.; Bonali, E. Terrestrial laser scanner resolution: Numerical simulations and experiments on spatial sampling optimization. Remote Sens. 2011, 3, 167–184. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, L.; Lei, T.; Wang, B.; Chen, J. Continuous extraction of subway tunnel cross sections based? On terrestrial point clouds. Remote Sens. 2014, 6, 857–879. [Google Scholar] [CrossRef]
- Zhao, X.; Kargoll, B.; Omidalizarandi, M.; Xu, X.; Alkhatib, H. Model selection for parametric surfaces approximating 3d point clouds for deformation analysis. Remote Sens. 2018, 10, 634. [Google Scholar] [CrossRef]
- Kromer, R.A.; Abellán, A.; Hutchinson, D.J.; Lato, M.; Edwards, T.; Jaboyedoff, M. A 4d filtering and calibration technique for small-scale point cloud change detection with a terrestrial laser scanner. Remote Sens. 2015, 7, 13029–13052. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Crosby, B.T. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, selawik river, alaska. Remote Sens. 2013, 5, 2813–2837. [Google Scholar] [CrossRef]
- Janowski, A.; Nagrodzka-Godycka, K.; Szulwic, J.; Ziółkowski, P. Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Comput. Concr. 2016, 18, 405–420. [Google Scholar] [CrossRef]
- Lichti, D.D. A review of geometric models and self-calibration methods for terrestrial laser scanners. Boletim de Ciencias Geodesicas 2010, 16, 3–19. [Google Scholar]
- Pingue, F.; Petrazzuoli, S.M.; Obrizzo, F.; Tammaro, U.; Martino, P.D.; Zuccaro, G. Monitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case). Measurement 2011, 44, 1628–1644. [Google Scholar] [CrossRef]
- Capra, A.; Bertacchini, E.; Castagnetti, C.; Rivola, R.; Dubbini, M. Recent approaches in geodesy and geomatics for structures monitoring. Rendiconti Lincei 2015, 26, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ghuffar, S.; Székely, B.; Roncat, A.; Pfeifer, N. Landslide displacement monitoring using 3d range flow on airborne and terrestrial lidar data. Remote Sens. 2013, 5, 2720–2745. [Google Scholar] [CrossRef]
- Qiao, G.; Lu, P.; Scaioni, M.; Xu, S.; Tong, X.; Feng, T.; Wu, H.; Chen, W.; Tian, Y.; Wang, W. Landslide investigation with remote sensing and sensor network: From susceptibility mapping and scaled-down simulation towards in situ sensor network design. Remote Sens. 2013, 5, 4319–4346. [Google Scholar] [CrossRef]
- Jankowski, R.; Wilde, K.; Fujino, Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes. Earthq. Eng. Struct. Dyn. 2015, 27, 487–502. [Google Scholar] [CrossRef]
- Chow, J.; Lichti, D.; Teskey, W. Accuracy assessment of the faro focus3d and leica hds6100 panoramic type terrestrial laser scanner through point-based and plane-based user self-calibration. In Proceedings of the FIG Working Week: Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 6–10 May 2012; Volume 610. [Google Scholar]
- Lichti, D.D.; Licht, M.G. Experiences with terrestrial laser scanner modelling and accuracy assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 155–160. [Google Scholar]
- Mohd Azwan, A.; Halim, S.; Zulkepli, M.; Albert, K.; Khairulnizam, M.; Anuar, A. Calibration and accuracy assessment of leica scanstation c10 terrestrial laser scanner. In Development in Multidimensional Spatial Data Models; Springer Lecture Notes in Geoinformation and Cartography (LNG&C); Springer: Berlin/Heidelberg, Germany, 2013; pp. 33–47. [Google Scholar]
- Sirmacek, B.; Shen, Y.; Lindenbergh, R.; Zlatanova, S.; Diakite, A. Comparison of zeb1 and leica c10 indoor laser scanning point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 143–149. [Google Scholar] [CrossRef]
- Kersten, T.P.; Mechelke, K.; Lindstaedt, M.; Sternberg, H. Methods for geometric accuracy investigations of terrestrial laser scanning systems. Photogramm. Fernerkund. Geoinf. 2009, 2009, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.P.; Masselink, G.; Russell, P.E.; Davidson, M.A. Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 2015, 228, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Blenkinsopp, C.E.; Mole, M.A.; Turner, I.L.; Peirson, W.L. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial lidar. Coast. Eng. 2010, 57, 1059–1065. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Turner, I.L.; Allis, M.J.; Peirson, W.L.; Garden, L.E. Application of lidar technology for measurement of time-varying free-surface profiles in a laboratory wave flume. Coast. Eng. 2012, 68, 1–5. [Google Scholar] [CrossRef]
- Martins, K.; Blenkinsopp, C.E.; Power, H.E.; Bruder, B.; Puleo, J.A.; Bergsma, E.W.J. High-resolution monitoring of wave transformation in the surf zone using a lidar scanner array. Coast. Eng. 2017, 128, 37–43. [Google Scholar] [CrossRef]
- Lindenbergh, R.C.; Soudarissanane, S.S.; De Vries, S.; Gorte, B.G.H.; De Schipper, M.A. Aeolian beach sand transport monitored by terrestrial laser scanning. Photogramm. Rec. 2015, 26, 384–399. [Google Scholar] [CrossRef]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Riquelme, A.; Cano, M.; Tomás, R.; Abellán, A. Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: A comparative analysis. Procedia Eng. 2017, 191, 838–845. [Google Scholar] [CrossRef]
- Marsella, M.; D’Aranno, P.J.V.; Scifoni, S.; Sonnessa, A.; Corsetti, M. Terrestrial laser scanning survey in support of unstable slopes analysis: The case of vulcano island (Italy). Nat. Hazards 2015, 78, 443–459. [Google Scholar] [CrossRef]
- Tysiac, P.; Wojtowicz, A.; Szulwic, J. Coastal cliffs monitoring and prediction of displacements using terrestial laser scanning. In Proceedings of the Geodetic Congress (Geomatics), Baltic, Gdansk, Poland, 2–4 June 2016; pp. 61–66. [Google Scholar]
- Ossowski, R.; Tysiac, P. A new approach of coastal cliff monitoring using mobile laser scanning. Pol. Marit. Res. 2018, 25, 140–147. [Google Scholar] [CrossRef]
- Puente, I.; Lindenbergh, R.; González-Jorge, H.; Arias, P. Terrestrial laser scanning for geometry extraction and change monitoring of rubble mound breakwaters. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 289. [Google Scholar] [CrossRef]
- Puente, I.; Sande, J.; González-Jorge, H.; Peña-González, E.; Maciñeira, E.; Martínez-Sánchez, J.; Arias, P. Novel image analysis approach to the terrestrial lidar monitoring of damage in rubble mound breakwaters. Ocean Eng. 2014, 91, 273–280. [Google Scholar] [CrossRef]
- Shen, Y.; Lindenbergh, R.; Hofland, B.; Kramer, R. Change analysis of laser scans of laboratory rock slopes subject to wave attack testing. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, Wuhan, China, 18–22 September 2017; Volume IV-2/W4, pp. 139–147. [Google Scholar]
- Girardeau-Montaut, D. Cloudcompare. 2017. Available online: http://www.danielgm.org/ (accessed on 19 December 2016).
- Dodaran, A.A.; Sang, K.P.; Kim, K.H.; Hong, B.P. Effects of roughness and vertical wall factors on wave overtopping in rubble mound breakwaters in busan yacht harbor. J. Ocean Eng. Technol. 2015, 29, 62–69. [Google Scholar] [CrossRef]
- Construction Industry Research, Information Association; Civieltechnisch Centrum Uitvoering Research en Regelgeving; Centre D’études Maritimes et Fluviales. The Rock Manual: The Use of Rock in Hydraulic Engineering, 2nd ed.; Ciria: London, UK, 2007; Volume 683. [Google Scholar]
- Geosystems, L. Leica Scanstation C10; Product Specifications: Heerbrugg, Switzerland, 2012. [Google Scholar]
- Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on point cloud data acquired with a ground laser scanner. In Proceedings of the ISPRS WG III/3, III/4, V/5 Workshop “Laser scanning 2005”, Enschede, The Netherlands, 12–14 September 2008; Volume 36. [Google Scholar]
- Jafari, B.; Khaloo, A.; Lattanzi, D. Deformation tracking in 3d point clouds via statistical sampling of direct cloud-to-cloud distances. J. Nondestruct. Eval. 2017, 36, 65. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, L.; Yue, H.; Lindenbergh, R. Range image techniques for fast detection and quantification of changes in repeatedly scanned buildings. Photogramm. Eng. Remote Sens. 2013, 79, 695–707. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P.J.G. Incidence angle influence on the quality of terrestrial laser scanning points. In Proceedings of the ISPRS Workshop Laser Scanning, Paris, France, 1–2 September 2009; Volume 66, pp. 83–88. [Google Scholar]
- Milenković, M.; Pfeifer, N.; Glira, P. Applying terrestrial laser scanning for soil surface roughness assessment. Remote Sens. 2015, 7, 2007–2045. [Google Scholar] [CrossRef]
- Perez-Gutierrez, C.; Martinez-Fernandez, J.; Sanchez, N.; Alvarez-Mozos, J. Modeling of soil roughness using terrestrial laser scanner for soil moisture retrieval. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1877–1880. [Google Scholar]
- Vos, S.; Lindenbergh, R.; de Vries, S.; Aagaard, T.; Deigaard, R.; Fuhrman, D. Coastscan: Continuous monitoring of coastal change using terrestrial laser scanning. In Proceedings of the Coastal Dynamics, Helsingor, Danmark, 12–16 June 2017; pp. 1518–1528. [Google Scholar]
- Zeibak, R.; Flin, S. Change analysis via terrestrial laser scanning. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and Silvil Laser 2007, Espoo, Finland, 12–14 September 2007; pp. 430–435. [Google Scholar]
Slope Type | Number of Points | |
---|---|---|
Before | After | |
1:10 | 2,508,761 | 2,673,580 |
1:5 | 1,979,464 | 2,007,694 |
Distance Interval (m) | 0–0.003 | 0.003–0.006 | 0.006–0.009 | 0.009–0.012 |
---|---|---|---|---|
Number of points | 2,505,973 | 103,628 | 42,993 | 14,816 |
Distance interval (m) | 0.012–0.015 | 0.015–0.018 | 0.018–0.021 | 0.021–0.024 |
Number of points | 4649 | 1137 | 252 | 95 |
Distance interval (m) | 0.024–0.027 | 0.027–0.030 | 0.030–0.033 | all |
Number of points | 28 | 8 | 1 | 2,673,580 |
Distance Interval (m) | 0–0.003 | 0.003–0.006 | 0.006–0.009 | 0.009–0.012 |
---|---|---|---|---|
Number of points | 1,963,455 | 33,476 | 8732 | 1715 |
Distance interval (m) | 0.012–0.015 | 0.015–0.018 | 0.018–0.0206 | all |
Number of points | 166 | 95 | 55 | 2,007,694 |
Slope 1 | Slope 2 | |
---|---|---|
[0.9942, −0.0497, 0.0955] | [0.5457, 0.8158, −0.1913] | |
[0.0292, 0.9995, −0.0082] | [0.8445, −0.5354, −0.0129] | |
[−0.0950, 0.0110, 0.9952] | [0.1129, 0.1545, 0.9812] |
Slope | Change Direction | Minimum (m) | Maximum (m) |
---|---|---|---|
2 | along | −0.0032 | 0.0052 |
upwards | −0.0018 | 0.0010 | |
1 | along | −0.0132 | 0.0121 |
upwards | −0.0036 | 0.0036 |
Point Clouds | Maximum | Minimum | Mean | Sum | ||||
---|---|---|---|---|---|---|---|---|
Slope 1 | Slope 2 | Slope 1 | Slope 2 | Slope 1 | Slope 2 | Slope 1 | Slope 2 | |
raw | 1257.1 | 1004.8 | −1229.8 | −528.5 | −16.7 | −5.9 | −79,060.9 | −22,552.2 |
50% | 1261.9 | 1003.3 | −1194.2 | −540.7 | −16.1 | −5.5 | −76,013.7 | −20,976.4 |
25% | 1192.0 | 994.4 | −1262.5 | −546.4 | −18.4 | −5.8 | −86,922.1 | −22,011.8 |
10% | 1506.9 | 991.4 | −1408.7 | −486.9 | −17.2 | −7.3 | −81,596.1 | −27,669.2 |
Cell Size (rad) | Maximum | Minimum | Mean | Sum | ||||
---|---|---|---|---|---|---|---|---|
Slope 1 | Slope 2 | Slope 1 | Slope 2 | Slope 1 | Slope 2 | Slope 1 | Slope 2 | |
0.01 × 0.01 | 748.0 | 2683.7 | −507.6 | −4309.9 | −10.8 | −117.8 | −3123.1 | −29,440.3 |
0.005 × 0.005 | 1008.5 | 2615.9 | −832.1 | −1413.4 | −16.6 | −23.6 | −19,673.7 | −23,144.4 |
0.0025 × 0.0025 | 1257.1 | 1004.8 | −1229.8 | −528.5 | −16.7 | −5.9 | −79,060.9 | −22,552.2 |
0.001 × 0.001 | 1169.3 | 196.8 | −1555.4 | −138.3 | −28.5 | −0.9 | −135,040.3 | −21,047.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, J.; Lindenbergh, R.; Hofland, B.; G. Ferreira, V. Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data. Remote Sens. 2018, 10, 1792. https://doi.org/10.3390/rs10111792
Shen Y, Wang J, Lindenbergh R, Hofland B, G. Ferreira V. Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data. Remote Sensing. 2018; 10(11):1792. https://doi.org/10.3390/rs10111792
Chicago/Turabian StyleShen, Yueqian, Jinguo Wang, Roderik Lindenbergh, Bas Hofland, and Vagner G. Ferreira. 2018. "Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data" Remote Sensing 10, no. 11: 1792. https://doi.org/10.3390/rs10111792
APA StyleShen, Y., Wang, J., Lindenbergh, R., Hofland, B., & G. Ferreira, V. (2018). Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data. Remote Sensing, 10(11), 1792. https://doi.org/10.3390/rs10111792