Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan)
<p>Map of the central Asia region around Lake Issykkul.</p> "> Figure 2
<p>Last campaign done in July 2017 over Lake Issykkul—in red are the cruise tracks, in white are the Sentinel-3A tracks, and in black (dots) the Jason-3 track, over the lake. Numbers indicate the pass number of Sentinel-3A orbit ground track. The blue dots represent the Jason-3 track over the lake. The color scale represents the altitude of the land around the lake. The brown/black stars represent the weather stations.</p> "> Figure 3
<p>Experimental design set-up over Lake Issykkul for the validation of altimeter measurements.</p> "> Figure 4
<p>Impact of boat velocity on the GPS antenna height. For a velocity of 12 km/h the bow of the ship was lower by 8 cm in average, with respect to the height, when the boat was not moving.</p> "> Figure 5
<p>Ellipsoidal height of the lake surface measured by Sentinel-3A with the <span class="html-italic">Ocean</span> retracker for cycle 9 (October 2016), for the two tracks (666 and 707) and with the boat instruments.</p> "> Figure 6
<p>Height above the ellipsoid of the lake measured by Sentinel-3A, with the <span class="html-italic">Ice-1</span> retracker for the cycle 9 (October 2016), for the two tracks (666 and 707) and with the shipborne instruments.</p> "> Figure 7
<p>Ellipsoidal height of the lake surface for Jason-3 with the <span class="html-italic">Ocean</span> and <span class="html-italic">Ice-1</span> retrackers, cycle 52 (July 2017) of track 131, and shipborne measurements.</p> "> Figure 8
<p>Time series of water height using Jason2, Jason-3, and Sentinel-3A data and in situ measurements of the permanent gauge in Cholpon Ata station over the period from January 2016 to July 2017. A bias of 2.4 m (±the absolute bias of each altimeter) has been applied to the altimeter time series, in order to correct for difference of reference systems, in which both series are given (the Baltic Sea-level for in situ, EGM2008 for altimetry).</p> "> Figure 9
<p>Difference of Jason-2, Jason-3, and Sentinel-3A estimates (with the <span class="html-italic">Ocean</span> retracker) with in situ measurements in Cholpon Ata, located in the north coast of the lake.</p> ">
Abstract
:1. Introduction
- Interpretation of information from internal-calibration modes of the sensors;
- Selection of the best algorithm in picking up the range in the radar echoes in various contexts;
- Selection of the best measurement or model to account for the delay in travelling through the atmosphere;
- Validation of the fully corrected estimates of the heights, whether it is sea-level or inland water-level.
2. Methodology for C/V of Radar Altimeters
2.1. Lake Issykkul C/V Site Description
2.2. Instrumental Design of the Field Campaigns
- The weather conditions, including wind driven waves and Seiche effects.
- The computation of the height of the GPS antenna, embarked on the boat.
- The estimate of the distance between this antenna and the water surface during the cruise.
2.3. Ground Estimate of the Water Height
2.4. Satellite Estimate of the Water Height
2.5. Calculation of the Altimeter Bias
3. Results
3.1. Absolute Biases of Sentinel-3A
3.2. Absolute Biases of Jason-3
3.3. Relative Retracking Algorithms Offsets
3.4. Quality Assessment: Long Term Comparison with In-Situ Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bindoff, N.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.; Gulev, S.; Hanawa, K.; Le Quéré, C.; Levitus, S.; Nojiri, Y.; et al. Ocean Climate change and Sea Level. In Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Cazenave, A.; Nerem, R.S. Present-Day sea level change: Observations and causes. Rev. Geophys. 2004, 42, RG3001. [Google Scholar] [CrossRef]
- Shum, C.K.; Yi, Y.; Cheng, K.; Kuo, C.; Braun, A.; Calmant, S.; Chambers, D. Calibration of Jason-1 Altimeter over lake Erie. Mar. Geod. 2003, 26, 335–354. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Kuo, C.-Y.; Tseng, H.-Z.; Yi, Y.; Shum, C.K. Lake surface height Calibration of Jason-1 and Jason-2 over the Great Lakes. Mar. Geod. 2010, 33, 186–203. [Google Scholar] [CrossRef]
- Calmant, S.; Santos Da Silva, J.; Medeiros Moreira, D.; Seyler, D.; Shum, C.K.; Cretaux, J.-F.; Gabalda, G. Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS. J. Adv. Space Res. 2013, 51, 1551–1564. [Google Scholar] [CrossRef]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Allain, D.; Bergé-Nguyen, M.; Calmant, S.; Cretaux, J.-F.; Lyard, F.; Testut, L.; Bonnet, M.-P.; et al. From Ocean to Inland Waters Monitoring (FOAM), Ocean Surface Topography Science Team (OSTST), Scientific Investigations 2017–2020. Available online: https://tinyurl.com/FOAM-OSTST (accessed on 28 July 2017).
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. [Oceans] 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Calmant, S.; Seyler, F.; Cretaux, J.-F. Monitoring Continental Surface Waters by Satellite Altimetry. Surv. Geophys. 2008, 29, 247–269. [Google Scholar] [CrossRef]
- Cretaux, J.F.; Calmant, S.; Romanovski, V.; Shabunin, A.; Lyard, F.; Berge-Nguyen, M.; Cazenave, A.; Hernandez, F.; Perosanz, F. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. J. Geod. 2009, 83, 723–735. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Calmant, S.; Romanovsky, V.V.; Perosanz, F.; Tashbaeva, S.; Bonnefond, P.; Moreira, D.; Shum, C.K.; Nino, F.; Bergé-Nguyen, M.; et al. Absolute Calibration of Jason radar altimeters from GPS kinematic campaigns over Lake Issykkul. Mar. Geod. 2011, 34, 291–318. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Bergé-Nguyen, M.; Calmant, S.; Romanovsky, V.V.; Meyssignac, B.; Perosanz, F.; Tashbaeva, S.; Arsen, A.; Fund, F.; Martignago, N.; et al. Calibration of envisat radar altimeter over Lake Issykkul. J. Adv. Space Res. 2013, 51, 1523–1541. [Google Scholar] [CrossRef]
- Verron, J.; Bonnefond, P.; Aouf, L.; Birol, F.; Suchandra, A.B.; Calmant, S.; Conchy, T.; Cretaux, J.-F.; Dibarboure, G.; Dubey, A.K.; et al. The benefits of the Ka-Band as evidenced from the SARAL/AltiKa Altmietric Mission: Scientific Applications. Remote Sens. 2018, 10, 163. [Google Scholar] [CrossRef]
- Romanovsky, V.V.; Tashbaeva, S.; Cretaux, J.-F.; Calmant, S.; Drolon, V. The closed Lake Issyk-Kul as an indicator of global warming in Tien-Shan. J. Nat. Sci. 2013, 5, 608–623. [Google Scholar] [CrossRef]
- Rodriguez, E. Surface Water and Ocean Topography Project, Science Requirement Document, Release March 2016, JPL D-61923. Available online: https://swot.jpl.nasa.gov/docs/D-61923_SRD_Rev_A_20160318.pdf (accessed on 23 July 2018).
- Haines, B.J.; Desai, S.D.; Born, G.H. The Harvest Experiment: Calibration of the Climate Data Record from TOPEX/Poseidon, Jason-1 and the Ocean Surface Topography Mission. Mar. Geod. 2010, 33, 91–113. [Google Scholar] [CrossRef]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Jan, G. Absolute Calibration of Jason-1 and Jason-2 Altimeters in Corsica during the Formation Flight Phase. Mar. Geod. 2010, 33, 80–90. [Google Scholar] [CrossRef]
- Mertikas, S.P.; Ioannides, R.T.; Tziavos, I.N.; Vergos, G.S.; Hausleitner, W.; Frantzis, X.; Tripolitsiotis, A.; Partsinevelos, P.; Andrikopoulos, D. Statistical Models and Latest Results in the Determination of the Absolute Bias for the Radar Altimeters of Jason Satellites using the Gavdos Facility. Mar. Geod. 2010, 33, 114–149. [Google Scholar] [CrossRef]
- Watson, C.; White, R.N.; Church, J.; Burgette, R.; Tregoning, P.; Coleman, R. Absolute Calibration in Bass Strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar. Geod. 2011, 34, 242–260. [Google Scholar] [CrossRef]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.-C. Zero-difference GPS ambiguity resolution at CNES-CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.N.; Berge-Nguyen, M.; Cancet, M.; Chaudhary, A.; Cretaux, J.-F.; Frappart, F.; Haines, B.J.; et al. The benefits of the Ka-Band as evidenced from the SARAL/AltiKa Altimetric mission: Quality assessment and unique characteristics of AltiKa data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef]
- Marty, J.-C.; Loyer, S.; Perosanz, F.; Mercier, F.; Bracher, G.; Legresy, B.; Portier, L.; Capdeville, H.; Fund, F.; Lemoine, J.-M.; et al. GINS: The CNES/GRGS GNSS scientific software. In Proceedings of the 3rd International Colloquium Scientific and Fundamental Aspects of the Galileo Programme, ESA Proceedings WPP326, Copenhagen, Denmark, 31 August–2 September 2011. [Google Scholar]
- Fund, F.; Perosanz, F.; Testut, L.; Loyer, S. An Integer Precise Point Positioning technique for sea surface observations using a GPS buoy. Adv. Space Res. 2013, 51, 1311–1322. [Google Scholar] [CrossRef]
- Barbu, A.; Laurent-Varin, J.; Perosanz, F.; Mercier, F.; Marty, J.C. Efficient QR Sequential Least Square algorithm for high frequency GNSS Precise Point Positioning seismic application. Adv. Space Res. 2018, 61, 448–456. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Abarca Del Rio, R.; Berge-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake volume monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. Kalman filter approach for estimating water level time series over inland waters using multi-mission satellite altimetry. HESS Discuss. 2015, 12, 4813–4855. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In The Use of Artificial Satellites for Geodesy, Geophysics Monograph Service; American Geophysical Union: Washington, DC, USA, 1972; Volume 15, pp. 247–251. [Google Scholar]
- Fernandes, J.; Lázaro, C.; Nunes, A.L.; Scharoo, R. Atmospheric corrections for altimetry studies over inland water. Remote Sens. 2014, 6, 4952–4997. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Nunes, A.L.; Lazaro, C. Analysis and inter-calibration of wet path delay datasets to compute the wet tropospheric correction for CryoSat-2 over ocean. Remote Sens. 2013, 5, 4977–5005. [Google Scholar] [CrossRef]
- Birkett, C.M.; Beckley, B. Investigating the performance of the Jason-2/OSTM Radar Altimeter over Lakes and Reservoirs. Mar. Geod. 2010, 33, 204–238. [Google Scholar] [CrossRef]
- Iijima, B.A.; Harris, I.L.; Ho, C.M.; Lindqwister, U.J.; Mannucci, A.J.; Pi, X.; Reyes, M.J.; Sparks, L.C.; Wilson, B.D. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data. J. Atmos. Solar-Terr. Phys. 1999, 61, 1205–1218. [Google Scholar] [CrossRef]
- Cartwright, D.E.; Tayler, R.J. New computations of the tide-generating potential. Geophys. J. R. Astr. Soc. 1971, 23, 45–74. [Google Scholar] [CrossRef]
- AVISO Handbook. Available online: http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j3.pdf (accessed on 23 July 2018).
- ESA Handbook. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-altimetry (accessed on 23 July 2018).
- Haines, B.J.; Desai, S.; Dodge, A.; Leben, B.; Masters, D.; Meining, C.; Nerem, S.; Shah, R.; Stalin, S. Connecting Jason-3 to the long-term sea level record: Results from harvest and regional campaigns. Presented at the Ocean Surface Topography Science Team (OSTST), Miami, FL, USA, 23–27 October 2017. [Google Scholar]
- Watson, C.; Legresy, B.; King, M.; Hextall, W. Updated altimeter absolute bias results from Bass strait, Australia. Presented at the Ocean Surface Topography Science Team (OSTST), Miami, FL, USA, 23–27 October 2017. [Google Scholar]
- Brown, G.S. Skylab S-193 Radar Experiment Analysis and Results; NASA Report NASA CR-2763; National Aeronautics and Space Administration: Washington, DC, USA, 1977.
- Ričko, M.; Birkett, C.M.; Carton, J.A.; Cretaux, J.-F. Intercomparison and validation of continental water level products derived from satellite radar altimetry. J. Appl. Remote Sens. 2012, 6, 061710. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crétaux, J.-F.; Bergé-Nguyen, M.; Calmant, S.; Jamangulova, N.; Satylkanov, R.; Lyard, F.; Perosanz, F.; Verron, J.; Samine Montazem, A.; Le Guilcher, G.; et al. Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sens. 2018, 10, 1679. https://doi.org/10.3390/rs10111679
Crétaux J-F, Bergé-Nguyen M, Calmant S, Jamangulova N, Satylkanov R, Lyard F, Perosanz F, Verron J, Samine Montazem A, Le Guilcher G, et al. Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sensing. 2018; 10(11):1679. https://doi.org/10.3390/rs10111679
Chicago/Turabian StyleCrétaux, Jean-François, Muriel Bergé-Nguyen, Stephane Calmant, Nurzat Jamangulova, Rysbek Satylkanov, Florent Lyard, Felix Perosanz, Jacques Verron, Amanda Samine Montazem, Gianfranco Le Guilcher, and et al. 2018. "Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan)" Remote Sensing 10, no. 11: 1679. https://doi.org/10.3390/rs10111679
APA StyleCrétaux, J. -F., Bergé-Nguyen, M., Calmant, S., Jamangulova, N., Satylkanov, R., Lyard, F., Perosanz, F., Verron, J., Samine Montazem, A., Le Guilcher, G., Leroux, D., Barrie, J., Maisongrande, P., & Bonnefond, P. (2018). Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sensing, 10(11), 1679. https://doi.org/10.3390/rs10111679