Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam
"> Figure 1
<p>Overview of Red–Thai Binh River Basin. The stations with black dots at the middle were used for calibration climatology–topography-based linear-scaling approach.</p> "> Figure 2
<p>Monthly rainfall distribution over Red–Thai Binh River Basin (March 2000–December 2016). Cross symbol indicates average monthly rainfall.</p> "> Figure 3
<p>Percentage bias (PBIAS) score’s spatial performance of TMPA products (<b>a</b>) 3B42V7 and (<b>b</b>) 3B42RT against observation data on both daily and monthly scales from March 2000 to December 2016 over Red–Thai Binh River Basin. The grey line is the Red–Thai Binh River Basin boundary within the Vietnam territory.</p> "> Figure 4
<p>PBIAS score’s spatial performance of TMPA rainfall data against observation data during (<b>a</b>) the dry and (<b>b</b>) the wet season from March 2000 to December 2016 over the Red–Thai Binh River Basin. The grey line is the Red–Thai Binh River Basin boundary within Vietnam territory.</p> "> Figure 5
<p>Average rainfall detection measurement of TMPA 3B42V7 and TMPA 3B42RT over the Red–Thai Binh River Basin from March 2000 to December 2016.</p> "> Figure 6
<p>Critical success index (CSI) score’s spatial performance of TMPA rainfall data against observation data from March 2000 to December 2016 over the Red–Thai Binh River basin. The grey line is the Red–Thai Binh River Basin boundary within Vietnam territory.</p> "> Figure 7
<p>Average probability density function (PDF) of ground observation, TMPA 3B42V7, and TMPA 3B42RT for rainfall in daily, daily (dry season), and daily (wet season) over the Red–Thai Binh River Basin from March 2000 to December 2016.</p> "> Figure 8
<p>Percentage difference of PDF between TMPA 3B42V7, TMPA 3B42RT, and observation at (<b>a</b>) no rainfall intensity (0–0.6 mm/day) and (<b>b</b>) low rainfall intensity (0.6–6 mm/day) over the Red–Thai Binh River Basin from March 2000 to December 2016.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Observation Data
2.2.2. TMPA Products
3. Method
3.1. Error Metric Assessment
3.2. Detection Metric Assessment
3.3. Rainfall Intensity Evaluation
3.4. Climate–Topography-Based Linear-Scaling (CTLS) Bias Correction Approach
4. Results and Discussion
4.1. Comparison between TMPA Products and Ground Observation Data
4.1.1. Daily and Monthly Scale Assessment
4.1.2. Dry and Wet Season Assessment
4.1.3. Rainfall Detection Assessment
4.1.4. Rainfall Intensity Analysis
4.2. Development of Bias Correction Model Using Climatology–Topography Characteristics-Based Linear-Scaling (LS) Approach
4.2.1. Correlation Analysis between Climatology–Topography Characteristics and Correction Factors of LS Approach
4.2.2. Multiple Linear Model Development to Estimate Correction Factors
4.2.3. Calibration and Validation of the CTLS Bias Correction Approach
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kumar, B.; Lakshmi, V. Accessing the capability of TRMM 3B42 V7 to simulate streamflow during extreme rain events: Case study for a Himalayan River Basin. J. Earth Syst. Sci. 2018, 127, 27. [Google Scholar] [CrossRef]
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Yilmaz, K.K.; Hogue, T.S.; Hsu, K.-L.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeorol. 2005, 6, 497–517. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Rana, S.; McGregor, J.; Renwick, J. Precipitation seasonality over the Indian subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals. J. Hydrometeorol. 2015, 16, 631–651. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef]
- Plengsaeng, B.; Wehn, U.; van der Zaag, P. Data-sharing bottlenecks in transboundary integrated water resources management: A case study of the Mekong River Commission’s procedures for data sharing in the Thai context. Water Int. 2014, 39, 933–951. [Google Scholar] [CrossRef]
- Gerlak, A.K.; Lautze, J.; Giordano, M. Water resources data and information exchange in transboundary water treaties. Int. Environ. Agreem. Polit. Law Econ. 2011, 2, 179–199. [Google Scholar] [CrossRef]
- Viglione, A.; Borga, M.; Balabanis, P.; Blöschl, G. Barriers to the exchange of hydrometeorological data in Europe: Results from a survey and implications for data policy. J. Hydrol. 2010, 394, 63–77. [Google Scholar] [CrossRef]
- García, L.; Rodríguez, D.; Wijnen, M.; Pakulski, I. Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector; World Bank Publications: Washington, DC, USA, 2016. [Google Scholar]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; US Geological Survey Data Series 832; U.S. Geological Survey: Sioux Falls, SD, USA, 2014.
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Ha, L.T.; Bastiaanssen, W.G.; Griensven, A.V.; Van Dijk, A.I.; Senay, G.B. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin. Water 2018, 10, 212. [Google Scholar] [CrossRef]
- Adjei, K.A.; Ren, L.; Appiah-Adjei, E.K.; Odai, S.N. Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrol. Res. 2015, 46, 777–791. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Arvor, D.; Dubreuil, V.; Ronchail, J.; Simões, M.; Funatsu, B.M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 2014, 34, 2622–2633. [Google Scholar] [CrossRef]
- Cashion, J.; Lakshmi, V.; Bosch, D.; Jackson, T.J. Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia. J. Hydrol. 2005, 307, 242–253. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Gao, B.; Jiao, Y.; Hong, Y.; Xu, T. Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River Basin using a distributed hydrologic model. J. Hydrometeorol. 2015, 16, 407–426. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Simons, G.; Bastiaanssen, W.; Ngô, L.A.; Hain, C.R.; Anderson, M.; Senay, G. Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies: A case study for the Red River Basin. Remote Sens. 2016, 8, 279. [Google Scholar] [CrossRef]
- Zad, M.; Najja, S.; Zulkafli, Z.; Muharram, F.M. Satellite Rainfall (TRMM 3B42-V7) Performance Assessment and Adjustment over Pahang River Basin, Malaysia. Remote Sens. 2018, 10, 388. [Google Scholar] [Green Version]
- Kneis, D.; Chatterjee, C.; Singh, R. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi). Hydrol. Earth Syst. Sci. 2014, 18, 2493–2502. [Google Scholar] [CrossRef] [Green Version]
- Curtarelli, M.P.; Rennó, C.D.; Alcântara, E.H. Evaluation of the Tropical Rainfall Measuring Mission 3B43 product over an inland area in Brazil and the effects of satellite boost on rainfall estimates. J. Appl. Remote Sens. 2014, 8, 1–14. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Wang, W. Evaluation of TRMM 3B43 data over the Yangtze River Delta of China. Sci. Rep. 2018, 8, 5290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.J. The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG); NASA/GSFC Code. Available online: https://pmm.nasa.gov/sites/default/files/document_files/TMPA-to-IMERG_transition_161025.pdf (accessed on 8 June 2018).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation; NASA/GSFC Code; NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 2015; Volume 612, p. 47.
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of Rainfall Estimates from TRMM and GPM Multisatellite Products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [Google Scholar] [CrossRef]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54, 670–684. [Google Scholar] [CrossRef]
- Hashemi, H.; Nordin, M.; Lakshmi, V.; Huffman, G.J.; Knight, R. Bias Correction of Long-Term Satellite Monthly Precipitation Product (TRMM 3B43) over the Conterminous United States. J. Hydrometeorol. 2017, 18, 2491–2509. [Google Scholar] [CrossRef]
- WMO. Guide to Hydrological Practices: Data Acquisition and Processing, Analysis, Forecasting and Other Applications; World Meteorological Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Duc, D.D. Assessment current situation and possibility of exploting satellite rainfall for flood forecasting- an application for Chu River Basin. J. Clim. Chang. Sci. 2017, 2, 98–104. (In Vietnamese) [Google Scholar]
- Poortinga, A.; Bastiaanssen, W.; Simons, G.; Saah, D.; Senay, G.; Fenn, M.; Bean, B.; Kadyszewski, J. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data. Remote Sens. 2017, 9, 86. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Masih, I.; Mohamed, Y.A.; van der Zaag, P. Validating Rainfall-Runoff Modelling Using Satellite-Based and Reanalysis Precipitation Products in the Sre Pok Catchment, the Mekong River Basin. Geosciences 2018, 8, 164. [Google Scholar] [CrossRef]
- NAWAPI. Red-Thai Binh River Basin Water Resources Planning, Term of Reference; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2017. (In Vietnamese)
- NAWAPI. Red-Thai Binh River Basin Water Resources Planning, Main Report; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2017. (In Vietnamese)
- MONRE. Circular on National Technical Standard of Meteorological Monitoring; 25/2012/TT-BTNMT; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2012.
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation; NASA: Greenbelt, MD, USA, 2013; Volume 28.
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef]
- NCHMF. Rainfall Classification of Vietnam; NCHMF: Hanoi, Vietnam, 2000.
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences (International Geophysics Series; V. 91); Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Lenderink, G.; Buishand, A.; Deursen, W.V. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- NAWAPI. Bang Giang—Ky Cung Water Resources Planning Project, Water Resources Assessment Report; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2018. (In Vietnamese)
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Win, K.W.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, D.; Li, Z.; Mishra, A.K.; Wang, Y.; Yang, H. Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. Int. J. Remote Sens. 2014, 35, 1272–1294. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Renwick, J.; McGregor, J. Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. Int. J. Climatol. 2014, 34, 249–264. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, A.; Pineda Ordonez, L.E.; Crespo, P.; Willems, P. Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3179–3193. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Nerini, D.; Zulkafli, Z.; Wang, L.-P.; Onof, C.; Buytaert, W.; Lavado-Casimiro, W.; Guyot, J.-L. A comparative analysis of TRMM–rain gauge data merging techniques at the daily time scale for distributed rainfall–runoff modeling applications. J. Hydrometeorol. 2015, 16, 2153–2168. [Google Scholar] [CrossRef]
- Xuan, T.T.; Tuyen, H.M.; Thai, T.T.; Dung, N.K. Water Resources on Vietnam’s River System; Science and Technology Publisher: Hanoi, Vietnam, 2012. (In Vietnamese) [Google Scholar]
No. | Station Name | Long. (°) | Lat. (°) | Elev. (m) | Annual Rainfall (AR) (mm/year) | Standard Deviation of Rainfall (SDR) (mm/day) | No. of Rain Days (NRD) (day) |
---|---|---|---|---|---|---|---|
1 | Baccan | 105.82 | 22.13 | 241 | 1389 | 11.29 | 250 |
2 | Bacninh | 106.05 | 21.20 | 8 | 1537 | 13.27 | 248 |
3 | Baolac | 105.67 | 22.95 | 348 | 1201 | 9.91 | 263 |
4 | Caobang | 106.23 | 22.67 | 244 | 1417 | 11.5 | 251 |
5 | Dienbien | 103.02 | 21.40 | 487 | 1535 | 11.75 | 248 |
6 | Hagiang | 104.98 | 22.82 | 117 | 2333 | 17.15 | 222 |
7 | Bavi | 105.37 | 21.08 | 535 | 1791 | 14.61 | 234 |
8 | Lang | 105.85 | 21.02 | 17 | 1686 | 14.5 | 246 |
9 | Phuxuyen | 105.90 | 20.77 | 9 | 1516 | 13.16 | 272 |
10 | Sontay | 105.50 | 21.13 | 14 | 1600 | 13.27 | 244 |
11 | Chilinh | 106.38 | 21.07 | 1 | 1489 | 12.51 | 250 |
12 | Haiduong | 106.30 | 20.95 | 3 | 1530 | 13.6 | 249 |
13 | Hoabinh | 105.33 | 20.82 | 48 | 1861 | 14.69 | 239 |
14 | Maichau | 105.07 | 20.60 | 579 | 1859 | 18.79 | 251 |
15 | Muongte | 102.63 | 22.47 | 354 | 2433 | 17.1 | 229 |
16 | Tamduong | 103.15 | 22.05 | 303 | 2333 | 14.49 | 216 |
17 | Chilang | 106.57 | 21.65 | 124 | 1324 | 11.9 | 267 |
18 | Langson | 106.77 | 21.83 | 263 | 1315 | 11.55 | 253 |
19 | Thatkhe | 106.47 | 22.25 | 157 | 1484 | 12.33 | 243 |
20 | Vanmich | 106.37 | 22.10 | 238 | 1341 | 11.33 | 240 |
21 | Laocai | 103.95 | 22.50 | 152 | 1810 | 14.11 | 229 |
22 | Ninhbinh | 105.98 | 20.27 | 3 | 1725 | 15.16 | 242 |
23 | Baichay | 107.03 | 20.97 | 59 | 1898 | 17.93 | 246 |
24 | Mongcai | 107.97 | 21.52 | 7 | 2735 | 24.5 | 230 |
25 | Tienyen | 107.44 | 21.33 | 16 | 2139 | 19.04 | 231 |
26 | Sonla | 103.90 | 21.33 | 709 | 1364 | 10.96 | 252 |
27 | Thainguyen | 105.50 | 21.60 | 784 | 1760 | 15.02 | 238 |
28 | Tuyenquang | 105.20 | 21.82 | 29 | 1575 | 14.02 | 242 |
29 | Yenbai | 104.87 | 21.70 | 41 | 1796 | 14.97 | 222 |
Ground Observation | |||
---|---|---|---|
Yes | No | ||
TMPA Product | Yes | Hit | False Alarm |
No | Miss | Correct Rejection |
n | TMPA 3B42V7 | TMPA 3B42RT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Daily Scale | Monthly Scale | Daily Scale | Monthly Scale | ||||||||||
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | ||
CC | 29 | 0.510 | 0.320 | 0.387 | 0.959 | 0.833 | 0.896 | 0.395 | 0.216 | 0.304 | 0.900 | 0.731 | 0.842 |
NSE | 29 | 0.207 | −0.507 | −0.152 | 0.884 | 0.593 | 0.765 | 0.002 | −0.968 | −0.521 | 0.792 | 0.131 | 0.480 |
RMSE | 29 | 21.7 | 11.4 | 15.1 | 111.6 | 36.2 | 66.5 | 24.5 | 13.7 | 17.3 | 143.6 | 76.4 | 96.0 |
PBIAS | 29 | 33.2 | −21.5 | 3.2 | 33.2 | −21.5 | 3.2 | 38.5 | −18.1 | 14.8 | 38.5 | −18.1 | 14.8 |
n | TMPA 3B42V7 | TMPA 3B42RT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry Season | Wet Season | Dry Season | Wet Season | ||||||||||
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | ||
Daily | |||||||||||||
CC | 29 | 0.487 | 0.289 | 0.407 | 0.494 | 0.264 | 0.344 | 0.423 | 0.196 | 0.317 | 0.364 | 0.141 | 0.255 |
NSE | 29 | −0.048 | −0.884 | −0.325 | 0.185 | −0.601 | −0.201 | −0.076 | −1.237 | −0.612 | −0.031 | −1.107 | −0.598 |
RMSE | 29 | 8.8 | 5.8 | 7.0 | 29.1 | 14.7 | 20.0 | 10.2 | 6.4 | 7.7 | 32.8 | 17.9 | 22.9 |
PBIAS | 29 | 18.9 | −38.6 | −10.4 | 37.2 | −19.4 | 6.1 | 31.7 | −47.3 | −14.1 | 43.2 | −13.3 | 20.7 |
Monthly | |||||||||||||
CC | 29 | 0.957 | 0.657 | 0.827 | 0.924 | 0.588 | 0.796 | 0.873 | 0.551 | 0.718 | 0.817 | 0.358 | 0.691 |
NSE | 29 | 0.881 | 0.191 | 0.586 | 0.788 | 0.276 | 0.566 | 0.672 | −0.381 | 0.199 | 0.618 | −0.845 | 0.009 |
RMSE | 29 | 44.9 | 16.8 | 29.0 | 152.8 | 48.0 | 88.7 | 57.1 | 26.7 | 41.0 | 198.3 | 100.6 | 128.6 |
PBIAS | 29 | 18.9 | −38.6 | −10.4 | 37.2 | −19.4 | 6.1 | 31.7 | −47.3 | −14.1 | 43.2 | −13.3 | 20.7 |
LONG | LAT | ELEV | AR | SDR | NRD | |
---|---|---|---|---|---|---|
−0.46 ** | −0.32 | −0.35 | 0.18 | 0.27 | −0.21 | |
0.47 ** | −0.61 ** | −0.48 ** | 0.09 | 0.29 | −0.02 | |
0.43 * | −0.58 ** | −0.42 * | −0.03 | 0.11 | 0.07 | |
0.01 | 0.00 | −0.11 | 0.52 ** | 0.47 * | −0.57 ** | |
0.01 | 0.07 | −0.02 | 0.66 ** | 0.56 ** | −0.65 ** | |
−0.04 | 0.02 | −0.09 | 0.63 ** | 0.45 * | −0.46 * | |
0.03 | 0.12 | −0.08 | 0.69 ** | 0.60 ** | −0.44 * | |
0.06 | −0.16 | −0.34 | 0.53 ** | 0.54 ** | −0.50 ** | |
−0.29 | 0.17 | 0.25 | 0.52 ** | 0.50 ** | −0.58 ** | |
0.26 | −0.42 * | −0.40 * | 0.58 ** | 0.68 ** | −0.47 * | |
0.29 | −0.05 | −0.47 ** | 0.31 | 0.33 | −0.32 | |
0.39 * | −0.39 * | −0.41 * | 0.12 | 0.23 | −0.17 |
LONG | LAT | ELEV | AR | SDR | NRD | |
---|---|---|---|---|---|---|
−0.02 | −0.50 ** | −0.10 | 0.29 | 0.28 | −0.30 | |
0.48 ** | −0.69 ** | −0.56 ** | −0.03 | 0.16 | 0.23 | |
0.25 | −0.55 ** | −0.42 * | −0.06 | 0.01 | 0.05 | |
−0.15 | 0.22 | −0.16 | 0.61 ** | 0.43 * | −0.57 ** | |
−0.22 | 0.37 | −0.03 | 0.69 ** | 0.47 * | −0.59 ** | |
−0.28 | 0.44 * | 0.02 | 0.68 ** | 0.39 * | −0.53 ** | |
0.10 | −0.13 | −0.30 | 0.61 ** | 0.56 ** | −0.18 | |
0.48 ** | −0.30 | −0.52 ** | 0.58 ** | 0.74 ** | −0.23 | |
30 | 0.04 | −0.03 | 0.54 ** | 0.69 ** | −0.34 | |
0.19 | −0.42 * | −0.34 | 0.57 ** | 0.66 ** | −0.35 | |
0.55 ** | −0.22 | −0.51 ** | 0.46 * | 0.62 ** | −0.24 | |
0.64 ** | −0.37 | −0.45 * | 0.23 | 0.43 * | −0.16 |
Formulas | CC | p-Value |
---|---|---|
0.446 | 0.045 | |
0.779 | <0.001 | |
0.768 | <0.001 | |
0.604 | 0.003 | |
0.748 | 0.001 | |
0.712 | 0.003 | |
0.733 | 0.002 | |
0.694 | 0.006 | |
0.687 | 0.006 | |
0.840 | <0.001 | |
0.600 | 0.003 | |
0.564 | 0.038 |
Formulas | CC | p-Value |
---|---|---|
0.501 | 0.041 | |
0.875 | <0.001 | |
0.748 | 0.001 | |
0.720 | 0.003 | |
0.761 | <0.001 | |
0.875 | <0.001 | |
0.608 | 0.002 | |
0.877 | <0.001 | |
0.712 | 0.003 | |
0.674 | 0.007 | |
0.838 | <0.001 | |
0.729 | 0.002 |
Before Bias Correction | LS | CTLS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | NSE | RMSE | PBIAS | CC | NSE | RMSE | PBIAS | CC | NSE | RMSE | PBIAS | |
3B42V7 | ||||||||||||
Calibration | 0.389 | −0.147 | 15.2 | 3.0 | 0.389 | −0.130 | 15.2 | 1.1 | 0.389 | −0.119 | 15.2 | 0.8 |
Validation | 0.378 | −0.175 | 14.8 | 4.0 | 0.375 | −0.153 | 14.7 | 1.5 | 0.372 | −0.165 | 14.8 | 1.7 |
3B42RT | ||||||||||||
Calibration | 0.303 | −0.509 | 17.3 | 13.5 | 0.309 | −0.299 | 16.3 | −0.2 | 0.306 | −0.342 | 16.6 | 2.2 |
Validation | 0.307 | −0.565 | 17.1 | 19.4 | 0.308 | −0.299 | 15.8 | 0.8 | 0.300 | −0.409 | 16.4 | 7.4 |
Before Bias Correction | LS | CTLS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | NSE | RMSE | PBIAS | CC | NSE | RMSE | PBIAS | CC | NSE | RMSE | PBIAS | |
3B42V7 | ||||||||||||
Calibration | 0.899 | 0.767 | 66.7 | 3.0 | 0.904 | 0.816 | 59.5 | 1.1 | 0.899 | 0.799 | 62.1 | 0.8 |
Validation | 0.881 | 0.755 | 65.8 | 4.0 | 0.883 | 0.778 | 63.2 | 1.5 | 0.873 | 0.755 | 65.9 | 1.7 |
3B42RT | ||||||||||||
Calibration | 0.843 | 0.488 | 96.1 | 13.5 | 0.866 | 0.734 | 71.8 | −0.2 | 0.850 | 0.677 | 78.8 | 2.2 |
Validation | 0.838 | 0.447 | 95.9 | 19.4 | 0.854 | 0.713 | 71.3 | 0.8 | 0.831 | 0.642 | 79.3 | 7.4 |
Before Bias Correction | LS | CTLS | ||||
---|---|---|---|---|---|---|
Dry Season | Wet Season | Dry Season | Wet Season | Dry Season | Wet Season | |
3B42V7 | ||||||
Calibration | −10.32 | 5.75 | 6.97 | 0.00 | 3.37 | 0.51 |
Validation | −10.92 | 19.29 | 9.63 | 0.00 | 12.67 | 0.07 |
3B42RT | ||||||
Calibration | −14.48 | 7.32 | −0.58 | 0.00 | 5.59 | 1.71 |
Validation | −12.75 | 26.23 | 5.59 | 0.00 | 24.32 | 4.55 |
Before Bias Correction | LS | CTLS | |||||||
---|---|---|---|---|---|---|---|---|---|
Daily | Daily (Dry Season) | Daily (Wet Season) | Daily | Daily (Dry Season) | Daily (Wet Season) | Daily | Daily (Dry Season) | Daily (Wet Season) | |
3B42V7 | |||||||||
Calibration | 0.450 | 0.258 | 0.531 | 0.449 | 0.259 | 0.529 | 0.448 | 0.259 | 0.529 |
Validation | 0.429 | 0.225 | 0.519 | 0.428 | 0.225 | 0.516 | 0.428 | 0.226 | 0.518 |
3B42RT | |||||||||
Calibration | 0.422 | 0.226 | 0.505 | 0.422 | 0.226 | 0.505 | 0.422 | 0.226 | 0.505 |
Validation | 0.402 | 0.202 | 0.492 | 0.402 | 0.205 | 0.492 | 0.402 | 0.206 | 0.492 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.M.; Sutton, J.R.P.; Bui, D.D.; Bolten, J.D.; Lakshmi, V. Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sens. 2018, 10, 1582. https://doi.org/10.3390/rs10101582
Le HM, Sutton JRP, Bui DD, Bolten JD, Lakshmi V. Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sensing. 2018; 10(10):1582. https://doi.org/10.3390/rs10101582
Chicago/Turabian StyleLe, Hung Manh, Jessica R. P. Sutton, Duong Du Bui, John D. Bolten, and Venkataraman Lakshmi. 2018. "Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam" Remote Sensing 10, no. 10: 1582. https://doi.org/10.3390/rs10101582
APA StyleLe, H. M., Sutton, J. R. P., Bui, D. D., Bolten, J. D., & Lakshmi, V. (2018). Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sensing, 10(10), 1582. https://doi.org/10.3390/rs10101582