Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data
"> Figure 1
<p>(<b>a</b>) The location of the study area in Cambodia (dark areas), (<b>b</b>) the coverage by the Quickbird images and the locations of the aerial survey areas within them (ASA 1 to 8, airborne LiDAR and aerial photographs), and (<b>c</b>) the relative sizes and shapes of the sample plots.</p> "> Figure 1 Cont.
<p>(<b>a</b>) The location of the study area in Cambodia (dark areas), (<b>b</b>) the coverage by the Quickbird images and the locations of the aerial survey areas within them (ASA 1 to 8, airborne LiDAR and aerial photographs), and (<b>c</b>) the relative sizes and shapes of the sample plots.</p> "> Figure 2
<p>Interpretation of orthophotographs by the object, which includes the intersection of a 250 m × 250 m grid, produced by segmenting the images in the <a href="#sec2dot4dot2-remotesensing-10-00438" class="html-sec">Section 2.4.2</a>.</p> "> Figure 3
<p>The workflow of the data analysis used for object-based mapping of AGB in tropical forests by combining VHSR satellite data with LiDAR data as the reference data.</p> "> Figure 4
<p>The relationships between reflectance in each band for two different combinations of dates that represent the eastern and western overlaps (<a href="#remotesensing-10-00438-f001" class="html-fig">Figure 1</a>b). All regressions were significant at <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>The relationship between AGB in the sample plots obtained from the field survey (AGB<sub>F</sub>) and AGB in the sample plots predicted by the LiDAR-based model (AGB<sub>L</sub>).</p> "> Figure 6
<p>The relationship between the AGB predicted from the LiDAR-based model (AGB<sub>L</sub>) and the AGB predicted from the model based on the satellite image data (AGB<sub>S</sub>) for each object.</p> "> Figure 7
<p>(<b>a</b>) The relationship between the AGB obtained from the field survey (AGB<sub>F</sub>) and the AGB predicted by the model based on the satellite image (AGB<sub>S</sub>) derived by the two-step method for each plot, and (<b>b</b>) the relationship between the AGB<sub>F</sub> and the AGB<sub>S</sub> derived by the direct method for each plot.</p> "> Figure 8
<p>Map of the object-based AGB values from the model based on the satellite image data (AGB<sub>S</sub>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remotely Sensed Data
2.2.1. VHSR Satellite Data
2.2.2. Airborne LiDAR Data
2.2.3. Digital Aerial Photographs
2.3. Field Survey
2.4. Data Analysis
2.4.1. Calibration of Satellite Data
2.4.2. Object-Based Classification of Satellite Data
2.4.3. LiDAR-Based Model for AGB Estimation
2.4.4. Development of a Model for AGB Estimation and Mapping Based on the Satellite Images
3. Results
3.1. Calibration of the Satellite Data
3.2. Object-Based Classification of Satellite Data
3.3. LiDAR-Based Model for AGB Estimation
3.4. The Model for AGB Estimation and Mapping Based on the Satellite Images
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Seyboth, A., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 811–922. ISBN 978-1-107-05821-7. [Google Scholar]
- Aalde, H.; Gonzalez, P.; Gytarsky, M.; Krug, T.; Kurz, W.A.; Lasco, R.D.; Martino, D.L.; McConkey, B.G.; Ogle, S.; Paustian, K.; et al. IPCC Chapter 2: Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; Volume 4, pp. 2.1–2.59. ISBN 4-88788-032-4. [Google Scholar]
- Guinea, P.N.; Rica, C. Reducing Emissions from Deforestation in Developing Countries: Approaches to Stimulate Action; FCCC/SBSTA/2009/L.19/Add.1; UNFCCC: Bonn, Germany, 2009; p. 2. [Google Scholar]
- UNFCCC. Cost of Implementing Methodologies and Monitoring Systems Relating to Estimates of Emissions from Deforestation and Forest Degradation, the Assessment of Carbon Stocks and Greenhouse Gas Emissions from Changes in Forest Cover, and the Enhancement of Forest Carbon Stocks; FCCC/TP/2009/1; UNFCCC: Bonn, Germany, 2009; pp. 17–36. [Google Scholar]
- Mascaro, J.; Asner, G.P.; Muller-Landau, H.C.; van Breugel, M.; Hall, J.; Dahlin, K. Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences 2011, 8, 1615–1629. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Can. J. Remote Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Kauranne, T.; Joshi, A.; Gautam, B.; Manandhar, U.; Nepal, S.; Peuhkurinen, J.; Hämäläinen, J.; Junttila, V.; Gunia, K.; Latva-Käyrä, P.; et al. LiDAR-assisted multi-source program (LAMP) for measuring above ground biomass and forest carbon. Remote Sens. 2017, 9, 154. [Google Scholar] [CrossRef]
- Saarela, S.; Holm, S.; Grafström, A.; Schnell, S.; Næsset, E.; Gregoire, T.G.; Nelson, R.F.; Ståhl, G. Hierarchical model-based inference for forest inventory utilizing three sources of information. Ann. For. Sci. 2016, 73, 895–910. [Google Scholar] [CrossRef]
- Ståhl, G.; Saarela, S.; Schnell, S.; Holm, S.; Breidenbach, J.; Healey, S.P.; Patterson, P.L.; Magnussen, S.; Næsset, E.; McRoberts, R.E.; et al. Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation. For. Ecosyst. 2016, 3. [Google Scholar] [CrossRef]
- Magnussen, S.; Boudewyn, P. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can. J. For. Res. 1998, 28, 1016–1031. [Google Scholar] [CrossRef]
- Næsset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 49–56. [Google Scholar] [CrossRef]
- Næsset, E.; Bjerknes, K.-O. Estimating tree heights and number of stems in young stands using airborne laser scanner data. Remote Sens. Environ. 2001, 78, 328–340. [Google Scholar] [CrossRef]
- St-Onge, B.; Treitz, P.; Wulder, M.A. Tree and canopy height estimation with scanning LiDAR. In Remote Sensing of Forest Environments—Concepts and Case Studies; Wulder, M.A., Franklin, S.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 489–509. ISBN 978-1-4615-0306-4. [Google Scholar]
- Maltamo, M.; Mustonen, K.; Hyyppä, J.; Pitkänen, J.; Yu, X. The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can. J. For. Res. 2004, 34, 1791–1801. [Google Scholar] [CrossRef]
- Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Hyyppä, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Finl. 1999, 16, 27–42. [Google Scholar]
- Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- McCombs, J.W.; Roberts, S.D.; Evans, D.L. Influence of fusing LiDAR and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation. For. Sci. 2003, 49, 457–466. [Google Scholar]
- Persson, Å.; Holmgren, J.; Söderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Takahashi, T.; Yamamoto, K.; Senda, Y.; Tsuzuku, M. Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J. For. Res. 2005, 10, 305–312. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Ioki, K.; Tsuyuki, S.; Hirata, Y.; Phua, M.H.; Wong, W.V.C.; Ling, Z.-Y.; Saito, H.; Takao, G. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. For. Ecol. Manag. 2014, 328, 335–341. [Google Scholar] [CrossRef]
- Ota, T.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; Ponce-Hernandez, R.; Ahmed, O.S.; et al. Estimating aboveground carbon using airborne LiDAR in Cambodian tropical seasonal forests for REDD+ implementation. J. For. Res. 2015, 20, 484–492. [Google Scholar] [CrossRef]
- Andersen, H.E.; Strunk, J.; Temesgen, H. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the Upper Tanana Valley of Interior Alaska. West. J. Appl. For. 2011, 26, 157–164. [Google Scholar]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C. Update of forest inventory data with lidar and high spatial resolution satellite data. Can. J. Remote Sens. 2008, 34, 5–12. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Clark, D.B.; Castro, C.S.; Alvarado, L.D.A.; Read, J.M. Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecol. Lett. 2004, 7, 52–59. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W. Mangrove tree crown delineation from high-resolution imagery. Photogramm. Eng Remote Sens. 2015, 81, 471–479. [Google Scholar] [CrossRef]
- Hirata, Y.; Tsubota, Y.; Sakai, A. Allometric models of DBH and crown area derived from QuickBird panchromatic data in Cryptomeria japonica and Chamaecyparis obtusa stands. Int. J. Remote Sens. 2009, 30, 5071–5088. [Google Scholar] [CrossRef]
- Strahler, A.H.; Woodcock, C.E.; Smith, J.A. On the nature of models in remote sensing. Remote Sens. Environ. 1986, 20, 121–139. [Google Scholar] [CrossRef]
- Ehlers, M.; Gähler, M.; Janowsky, R. Automated analysis of ultra high resolution remote sensing data for biotope type mapping: New possibilities and challenge. ISPRS J. Photogramm. Remote Sens. 2003, 57, 315–326. [Google Scholar] [CrossRef]
- Coutern, P.; Barbier, N.; Deblauwe, V.; Pélissier, R.; Ploton, P. Texture analysis of very high spatial resolution optical images as a way to monitor vegetation and forest biomass in the tropics. In Geospatial Information Systems for Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region; ICIMOD: Kathmandu, Nepal, 2015; pp. 157–164. [Google Scholar]
- Bastin, J.-F.; Barbier, N.; Barbier, N.; Coutern, P.; Adams, B.; Shapiro, A.; Bogaert, J.; De Cannire, C. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecol. Appl. 2014, 24, 1984–2001. [Google Scholar] [CrossRef] [PubMed]
- Hay, G.J.; Marceau, D.; Dube, P.; Bouchard, A. A multiscale framework for landscape analysis: Object-specific analysis and upscaling. Landsc. Ecol. 2001, 16, 471–490. [Google Scholar] [CrossRef]
- Platt, R.V.; Schoennagel, T. An object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938–1999. For. Ecol. Manag. 2009, 258, 1342–1349. [Google Scholar] [CrossRef]
- Hussin, Y.A.; Gilani, H.; van Leeuwen, L.; Murthy, M.S.R.; Shah, R.; Baral, S.; Tsendbazar, N.-E.; Shrestha, S.; Shah, S.K.; Qamer, F.M. Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Appl. Geomath. 2014, 6, 59–68. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ. 2008, 112, 2988–2998. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L.J.; Im, J. Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens. Environ. 2010, 114, 1141–1154. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Global Forest Resources Assessment 2015—Country Report Cambodia; FAO: Rome, Italy, 2014; p. 23. [Google Scholar]
- Ehara, M.; Hyakumura, K.; Nomura, H.; Matsuura, T.; Sokh, H.; Leng, C. Identifying characteristics of households affected by deforestation in their fuelwood and non-timber forest product collections: Case study in Kampong Thom Province, Cambodia. Land Use Policy 2016, 52, 92–102. [Google Scholar] [CrossRef]
- Tani, A.; Ito, E.; Kanzaki, M.; Ohta, S.; Khron, S.; Pith, P.; Tith, B.; Pol, S.; Lim, S. Principal forest types of three regions of Cambodia: Kampong Thom, Kratie, and Mondolkiri. In Forest Environments in the Mekong River Basin; Sawada, H., Araki, M., Chappell, N.A., LaFrankie, J.V., Shimizu, A., Eds.; Springer: Tokyo, Japan, 2007; pp. 210–213. ISBN 978-4-431-46503-4. [Google Scholar]
- Duan, Z.; Zhao, D.; Zeng, Y.; Zhao, Y.; Wu, B.; Zhu, J. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data. Sensors 2015, 15, 12133–12155. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Furuya, N.; Suzuki, M.; Yamamoto, H. Airborne laser scanning in forest management: Individual tree identification and laser pulse penetration in a stand with different levels of thinning. For. Ecol. Manag. 2009, 258, 752–760. [Google Scholar] [CrossRef]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests, a Primer; Food and Agriculture Organization (FAO): Rome, Italy, 1997; ISBN 92-5-103955-0. [Google Scholar]
- Monda, K. Analysis of permanent sample plot data. In REDD-plus Cookbook; Hirata, Y., Takao, G., Sato, T., Toriyama, J., Eds.; REDD Research and Development Center, Forestry and Forest Products Research Institute: Tsukuba, Japan, 2012; pp. 120–123. ISBN 978-4-905304-15-9. [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann-Verlag: Heidelberg, Germany, 2000; pp. 12–23. ISBN 387907349X. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.B.; Dubayah, R.O.; Knox, R.G.; Clark, D.B.; Blair, J.B. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens. Environ. 2002, 81, 378–392. [Google Scholar] [CrossRef]
- Magnusson, M.; Fransson, J.E.S.; Holmgren, J. Effects on estimation accuracy of forest variables using different pulse density of laser data. For. Sci. 2007, 53, 619–626. [Google Scholar]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Nelson, R. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sens. Environ. 2009, 113, 182–196. [Google Scholar] [CrossRef]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Chubey, M.S.; Franklin, S.E.; Wulder, M.A. Object-based Analysis of Ikonos-2 Imagery for Extraction of Forest Inventory Parameters. Photogramm. Eng. Remote Sens. 2006, 72, 383–394. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Nobuhiro, T.; Shimizu, A.; Kabeya, N.; Tamai, K.; Ito, E.; Araki, M.; Kubota, T.; Tsuboyama, Y.; Chann, S. Evapotranspiration during the late rainy season and middle of the dry season in the watershed of an evergreen forest area, central Cambodia. Hydrol. Process. 2008, 22, 1281–1289. [Google Scholar] [CrossRef]
- Tamai, K.; Shimizu, A.; Nobuhiro, T.; Kabeya, N.; Chann, S.; Keth, N. Measurements of wind speed, direction, and vertical profiles in an evergreen forest in central Cambodia. In Forest Environments in the Mekong River Basin; Sawada, H., Araki, M., Chappell, N.A., LaFrankie, J.V., Shimizu, A., Eds.; Springer: Tokyo, Japan, 2007; pp. 87–96. ISBN 978-4-431-46503-4. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ. 2009, 113, 1988–1999. [Google Scholar] [CrossRef]
- Walker, J.J.; De Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–392. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R.E. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2897, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kronseder, K.; Ballhorn, U.; Böhmc, V.; Sieger, F. Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 37–48. [Google Scholar] [CrossRef]
- Mascaro, J.; Detto, M.; Asner, G.P.; Muller-Landau, H.C. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens. Environ. 2011, 115, 3770–3774. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Hojas-Gascon, L.; Cerutti, P.O.; Eva, H.; Nasi, R.; Martius, C. Monitoring Deforestation and Forest Degradation in the Context of REDD+ Lessons from Tanzania; Center for International Forestry Research: Bogor, Indonesia, 2015; Volume 124, pp. 1–8. [Google Scholar]
Spacecraft | No. of Imaging Bands | Acquisition Date | Max. Off-Nadir Angle (°) | Min. Solar Elevation (°) | Cloud Cover (%) |
---|---|---|---|---|---|
QB02 | 1 pan & 4 MS | 27 November 2011 | 21.12 | 46.53 | 0 |
QB02 | 1 pan & 4 MS | 30 November 2011 | 9.02 | 46.95 | 0 |
QB02 | 1 pan & 4 MS | 19 December 2011 | 3.08 | 44.36 | 0 |
Forest Type and Characteristics | Mean | Max. | Min. | S.D. |
---|---|---|---|---|
Primary dry evergreen forest (n = 11) | ||||
Number of stems per ha | 1341 | 1578 | 1133 | 152 |
Average DBH (cm) | 12.1 | 14.0 | 9.1 | 1.5 |
Basal area (m2/ha) | 29.4 | 41.6 | 15.9 | 8.2 |
Average tree height (m) | 12.7 | 14.0 | 10.5 | 1.2 |
AGB (Mg/ha) | 316.3 | 546.1 | 130.6 | 130.3 |
Secondary dry evergreen forest (n = 16) | ||||
Number of stems per ha | 1649 | 2156 | 1222 | 285 |
Average DBH (cm) | 10.9 | 12.2 | 8.9 | 1.0 |
Basal area (m2/ha) | 21.9 | 27.4 | 17.1 | 3.1 |
Average tree height (m) | 11.8 | 14.0 | 10.1 | 1.1 |
AGB (Mg/ha) | 174.3 | 262.9 | 105.2 | 47.1 |
Dry dipterocarp forest (n = 15) | ||||
Number of stems per ha | 711 | 1132 | 333 | 235 |
Average DBH (cm) | 10.5 | 15.8 | 8.1 | 1.8 |
Basal area (m2/ha) | 8.5 | 13.5 | 4.9 | 2.9 |
Average tree height (m) | 7.3 | 9.3 | 5.9 | 0.9 |
AGB (Mg/ha) | 64.4 | 134.4 | 26.8 | 32.9 |
Regenerating forest (n = 15) | ||||
Number of stems per ha | 607 | 1752 | 48 | 575 |
Average DBH (cm) | 9.7 | 14.7 | 7.2 | 2.3 |
Basal area (m2/ha) | 4.5 | 12.0 | 0.3 | 3.6 |
Average tree height (m) | 8.5 | 11.8 | 6.6 | 1.4 |
AGB (Mg/ha) | 27.1 | 70.2 | 1.5 | 21.1 |
Reference Data (no. of Validation Points) | ||||||||
---|---|---|---|---|---|---|---|---|
Classified Image | PDEF | SDEF | DDF | RF | AL | BL | Total | User Accuracy (%) |
PDEF | 77 | 11 | 0 | 0 | 0 | 0 | 88 | 87.5 |
SDEF | 4 | 84 | 4 | 1 | 0 | 2 | 95 | 88.4 |
DDF | 2 | 12 | 24 | 3 | 1 | 1 | 43 | 55.8 |
RF | 0 | 9 | 7 | 76 | 1 | 0 | 93 | 81.7 |
AL | 0 | 2 | 5 | 4 | 16 | 3 | 30 | 53.3 |
BL | 0 | 3 | 2 | 6 | 5 | 17 | 33 | 51.5 |
Total no. of points | 83 | 121 | 42 | 90 | 23 | 23 | 382 | |
Producer accuracy (%) | 92.8 | 69.4 | 57.1 | 84.4 | 69.6 | 73.9 | 77.0 |
Reference Data (no. of Validation Points) | ||||
---|---|---|---|---|
Classified Image | Forest | Non-Forest | Total | User Accuracy (%) |
Forest | 314 | 5 | 319 | 98.4 |
Non-forest | 22 | 41 | 63 | 65.1 |
Total no. of points | 336 | 46 | 382 | |
Producer accuracy (%) | 93.5 | 89.1 | 92.9 |
Parameter | Variable Name | Estimate | Standard Error |
---|---|---|---|
β0 | Intercept | −137.13 | 21.07 |
β1 | Maximum DCM height | 16.68 | 4.44 |
β2 | Minimum DCM height | 10.85 | 2.09 |
β3 | Mean DCM height | 0.28 | 2.79 |
Parameter | Variable Name | Estimate | Standard Error |
---|---|---|---|
α0 | Intercept | 415.50 | 86.54 |
β1 | Mean for band 1 | 17.46 | 19.31 |
β2 | Mean for band 2 | −40.02 | 12.92 |
β3 | Mean for band 3 | 22.10 | 10.00 |
β4 | Mean for band 4 | −0.26 | 2.39 |
β5 | Mean for panchromatic band | 7.39 | 3.38 |
γ1 | SD for band 1 | −185.31 | 35.70 |
γ2 | SD for band 2 | 88.76 | 18.05 |
γ3 | SD for band 3 | −28.46 | 6.12 |
γ4 | SD for band 4 | 12.98 | 3.37 |
γ5 | SD for panchromatic band | −9.51 | 5.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirata, Y.; Furuya, N.; Saito, H.; Pak, C.; Leng, C.; Sokh, H.; Ma, V.; Kajisa, T.; Ota, T.; Mizoue, N. Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data. Remote Sens. 2018, 10, 438. https://doi.org/10.3390/rs10030438
Hirata Y, Furuya N, Saito H, Pak C, Leng C, Sokh H, Ma V, Kajisa T, Ota T, Mizoue N. Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data. Remote Sensing. 2018; 10(3):438. https://doi.org/10.3390/rs10030438
Chicago/Turabian StyleHirata, Yasumasa, Naoyuki Furuya, Hideki Saito, Chealy Pak, Chivin Leng, Heng Sokh, Vuthy Ma, Tsuyoshi Kajisa, Tetsuji Ota, and Nobuya Mizoue. 2018. "Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data" Remote Sensing 10, no. 3: 438. https://doi.org/10.3390/rs10030438
APA StyleHirata, Y., Furuya, N., Saito, H., Pak, C., Leng, C., Sokh, H., Ma, V., Kajisa, T., Ota, T., & Mizoue, N. (2018). Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data. Remote Sensing, 10(3), 438. https://doi.org/10.3390/rs10030438