Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué
<p>(<b>a</b>) Location of the Ogooué River Basin in Gabon in Equatorial Africa. (<b>b</b>) In this basin, delineated with a white line, the Ogooué and its major tributaries appear in light blue. Altimetry tracks are represented in red for the missions on a 10-day repeat cycle on their nominal track (Jason-1/2/3), in black for Sentinel-3A on its nominal track (27-day repeat cycle), in yellow for the missions on a 35-day repeat cycle on their nominal track (ERS-2/ENVISAT/SARAL), (<b>c</b>) zoom of the downstream of the Ogooué River Basin with altimetric tracks of Cryosat-2 on its nominal track (369-day repeat cycle) in cyan lines.</p> "> Figure 2
<p>Locations of the altimetry virtual stations in the Ogooué River Basin. VS from ERS-2, ENVISAT, ENVISAT 2nd orbit, SARAL, Sentinel-3A, Cryosat-2, Jason-1, Jason-2, Jason-3 are represented using orange stars, white stars, brown dots, red dots, blue squares, cyan triangles, green squares and orange diamonds respectively. For readability purpose, virtual stations from missions with repeat period shorter than 35 days are presented in (<b>a</b>) and virtual stations from Cryosat-2 are presented in (<b>b</b>).</p> "> Figure 3
<p>Results of the comparison between the altimetry-based water stages from ERS-2/ENVISAT/SARAL for tracks 401 (<b>a</b>), 902 (<b>b</b>), 945 (<b>c</b>), 444 (<b>d</b>) and the in situ ones from Lambaréné gauge station.</p> "> Figure 4
<p>Results of the comparison between the altimetry-based water stages from ENVISAT on its second orbit for (<b>a</b>) Station 1, (<b>b</b>) Station 2 and (<b>c</b>) Station 3 and the in-situ ones from Lambaréné gauge station.</p> "> Figure 5
<p>Results of the comparison between the altimetry-based water stages from Sentinel-3A for tracks (<b>a</b>) 050, (<b>b</b>) 378 and (<b>c</b>) 128 and the in-situ ones from Lambaréné gauge station.</p> "> Figure 6
<p>Results of the comparison between the altimetry-based water stages from Cryosat-2 and the in-situ ones from Lambaréné gauge station.</p> "> Figure 7
<p>Maps of maximum of cross-correlation between time series from ENVISAT data in the ORB for the four VS around Lambaréné.</p> "> Figure 8
<p>Maps of maximum of cross-correlation between time series from SARAL data in the ORB for the four VS around Lambaréné.</p> "> Figure 9
<p>Time series of water level from Jason-2 (blue), Jason-3 (dashed green) and Sentinel-3A (dashed red) on the Ivindo (<b>a</b>) and upstream Ogooué (<b>b</b>) rivers.</p> "> Figure 10
<p>Time series of water level at Lambaréné from the in-situ gauge record (black continuous line), the multi-mission altimetry-based record (ERS-2 data are represented with diamonds, ENVISAT with blue crosses on its nominal orbit and with green triangles on its second orbit, Cryosat-2 with green-blue stars, SARAL with red circles, Sentinel-3 with purple dots).</p> "> Figure 11
<p>Time series of river discharge at Lambaréné from the in-situ gauge record (black continuous line), the multi-mission altimetry-based record (ERS-2 data are represented with diamonds, ENVISAT with blue crosses on its nominal orbit and with green triangles on its second orbit, Cryosat-2 with green-blue stars, SARAL with red circles, Sentinel-3 with purple dots).</p> ">
Abstract
:1. Introduction
- what are the performances of the different altimetry missions, from ERS-2 to Sentinel-3A, to retrieve water levels?
- how does the combination of data from several altimetry virtual stations improve the retrieval of the annual discharge in the ORB?
2. Study Area
3. Datasets
3.1. Radar Altimetry Data
3.2. In Situ Water Levels and Discharges
4. Methods
4.1. Altimetry-Based Water Levels
- (i)
- the rough delineation of the cross-section between the altimeter tracks and the rivers using Google Earth,
- (ii)
- the loading of the altimetry over the study area and the computation of the altimeter heights from the raw data contained in the GDRs,
- (iii)
- a refined selection of the valid altimetry data through visual inspection,
- (iv)
- the computation of the water level time-series as the median of the selected water levels every cycle.
4.2. Discharge Estimates
5. Results
5.1. Altimetry-Based Network of Gauging Stations
5.2. Altimetry-Based Water Levels Validation Using the Lambaréné Gauge Record
5.3. Consistency of the Altimetry-Based Water Levels in the Ogooué River Basin
5.4. Multi-Mission Discharge Estimates
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Younger, P.L. Water; Hodder & Stoughton: London, UK, 2012. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Alsdorf, D.; Beighley, E.; Laraque, A.; Lee, H.; Tshimanga, R.; O’Loughlin, F.; Mahé, G.; Dinga, B.; Moukandi, G.; Spencer, R.G.M. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 2016, 54, 378–409. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A. Satellite Altimetry over Oceans and Land Surfaces; Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Crétaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological applications of satellite altimetry: Rivers, lakes, man-made reservoirs, inundated areas. In Satellite Altimetry over Oceans and Land Surfaces; Stammer, D., Cazenave, A., Eds.; Earth Observation of Global Changes; CRC Press: Boca Raon, FL, USA, 2017; pp. 459–504. [Google Scholar]
- Morris, C.S.; Gill, S.K. Variation of Great Lakes water levels derived from Geosat altimetry. Water Resour. Res. 1994, 30, 1009–1017. [Google Scholar] [CrossRef]
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. 1995, 100204, 179–225. [Google Scholar] [CrossRef]
- Koblinsky, C.J.; Clarke, R.T.; Brenner, A.C.; Frey, H. Measurement of river level variations with satellite altimetry. Water Resour. Res. 1993, 29, 1839–1848. [Google Scholar] [CrossRef]
- Birkett, C.M. Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands. Water Resour. Res. 1998, 34, 1223. [Google Scholar] [CrossRef]
- Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Baup, F.; Frappart, F.; Maubant, J. Use of satellite altimetry and imagery for monitoring the volume of small lakes. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Sulistioadi, Y.B.; Tseng, K.-H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Malbeteau, Y.; León, J.G.; Ramillien, G.; Prigent, C.; Seoane, L.; Seyler, F.; Calmant, S. Surface freshwater storage variations in the orinoco floodplains using multi-satellite observations. Remote Sens. 2015, 7, 89–110. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Lawrence Dingman, S.; Vorosmarty, C.J.; Bolster, C.H.; Congalton, R.G. Evaluating the potential for measuring river discharge from space. J. Hydrol. 2003, 278, 17–38. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Kouraev, A.V.; Cazenave, A.; Seyler, F. Amazon River discharge estimated from TOPEX/Poseidon altimetry. Comptes Rendus Geosci. 2006, 338, 188–196. [Google Scholar] [CrossRef]
- Papa, F.; Durand, F.; Rossow, W.B.; Rahman, A.; Bala, S.K. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res. Ocean. 2010, 115, C12013. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O’Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation at ungauged river sites using remote sensing. Hydrol. Process. 2014, 28, 1043–1054. [Google Scholar] [CrossRef]
- Leon, J.G.; Calmant, S.; Seyler, F.; Bonnet, M.-P.; Cauhopé, M.; Frappart, F.; Filizola, N.; Fraizy, P. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. J. Hydrol. 2006, 328, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef]
- Paris, A.; Dias de Paiva, R.; Santos da Silva, J.; Medeiros Moreira, D.; Calmant, S.; Garambois, P.-A.; Collischonn, W.; Bonnet, M.-P.; Seyler, F. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin. Water Resour. Res. 2016, 52, 3787–3814. [Google Scholar] [CrossRef]
- Wilson, M.D.; Bates, P.; Alsdorf, D.; Forsberg, B.; Horritt, M.; Melack, J.; Frappart, F.; Famiglietti, J. Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Getirana, A.; Bonnet, M.; Calmant, S.; Roux, E.; Rotunno Filho, O.C.; Mansur, W.J. Hydrological monitoring of poorly gauged basins based on rainfall-runoff modeling and spatial altimetry. J. Hydrol. 2009, 379, 205–219. [Google Scholar] [CrossRef]
- Milzow, C.; Krogh, P.E.; Bauer-Gottwein, P. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for model calibration and validation in a large ungauged catchment. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 9123–9154. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Cardenal, S.; Riegels, N.D.; Berry, P.A.M.; Smith, R.G.; Yakovlev, A.; Siegfried, T.U.; Bauer-Gottwein, P. Real-time remote sensing driven river basin modeling using radar altimetry. Hydrol. Earth Syst. Sci. 2011, 15, 241–254. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, R.C.D.; Buarque, D.C.; Collischonn, W.; Bonnet, M.P.; Frappart, F.; Calmant, S.; Bulhões Mendes, C.A. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res. 2013, 49, 1226–1243. [Google Scholar] [CrossRef] [Green Version]
- Mignard, S.L.A.; Mulder, T.; Martinez, P.; Charlier, K.; Rossignol, L.; Garlan, T. Deep-sea terrigenous organic carbon transfer and accumulation: Impact of sea-level variations and sedimentation processes off the Ogooue River (Gabon). Mar. Pet. Geol. 2017, 85, 35–53. [Google Scholar] [CrossRef]
- Mahe, G.; Lerique, J.; Olivry, J.-C. Le fleuve Ogooué au Gabon: Reconstitution des débits manquants et mise en évidence de variations climatiques à l’équateur. Hydrol. Cont. 1990, 5, 105–124. [Google Scholar]
- Lambert, T.; Darchambeau, F.; Bouillon, S.; Alhou, B.; Mbega, J.D.; Teodoru, C.R.; Nyoni, F.C.; Massicotte, P.; Borges, A.V. Landscape Control on the Spatial and Temporal Variability of Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon in Large African Rivers. Ecosystems 2015, 18, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- Lienou, G.; Mahe, G.; Paturel, J.E.; Servat, E.; Sighomnou, D.; Ekodeck, G.E.; Dezetter, A.; Dieulin, C. Evolution des régimes hydrologiques en région équatoriale camerounaise: Un impact de la variabilité climatique en Afrique équatoriale? Hydrol. Sci. J. 2008, 53, 789–801. [Google Scholar] [CrossRef]
- Home—CTOH. Available online: http://ctoh.legos.obs-mip.fr/ (accessed on 24 October 2017).
- Frappart, F.; Legrésy, B.; Niño, F.; Blarel, F.; Fuller, N.; Fleury, S.; Birol, F.; Calmant, S. An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies. Remote Sens. Environ. 2016, 184, 558–581. [Google Scholar] [CrossRef]
- Blarel, F.; Frappart, F.; Legrésy, B.; Blumstein, D.; Fatras, C.; Mougin, E.; Papa, F.; Prigent, C.; Rémy, F.; Niño, F.; et al. Radar altimetry backscattering signatures at Ka, Ku, C and S bands over land. In Proceedings of the Living Planet Symposium, Prague, Chech Republic, 9–13 May 2016. [Google Scholar]
- Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, J.-D.; Boy, F.; Sottolichio, A.; Valle-Levinson, A. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River. Adv. Space Res. 2017, 59, 128–146. [Google Scholar] [CrossRef]
- Frappart, F.; Roussel, N.; Biancale, R.; Martinez Benjamin, J.J.; Mercier, F.; Perosanz, F.; Garate Pasquin, J.; Martin Davila, J.; Perez Gomez, B.; Gracia Gomez, C.; et al. The 2013 Ibiza Calibration Campaign of Jason-2 and SARAL Altimeters. Mar. Geodesy 2015, 38, 219–232. [Google Scholar] [CrossRef]
- Vu, P.; Frappart, F.; Darrozes, J.; Marieu, V.; Blarel, F.; Ramillien, G.; Bonnefond, P.; Birol, F. Multi-Satellite Altimeter Validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL. Remote Sens. 2018, 10, 93. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Marieu, V.; Spodar, A.; Parisot, J.-P.; Hanquiez, V.; Turki, I.; Laignel, B. Monitoring Sea Level and Topography of Coastal Lagoons Using Satellite Radar Altimetry: The Example of the Arcachon Bay in the Bay of Biscay. Remote Sens. 2018, 10, 297. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Marieu, V.; Malbeteau, Y.; Jordy, F.; Calmant, S.; Durand, F.; Bala, S. Preliminary Assessment of SARAL/AltiKa Observations over the Ganges-Brahmaputra and Irrawaddy Rivers. Mar. Geodesy 2015, 38, 568–580. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.G.; Griffiths, H. New Techniques in Satellite Altimeter Tracking Systems. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Zurich, Switzerland, 1986; pp. 1339–1344. [Google Scholar]
- Nielsen, K.; Stenseng, L.; Andersen, O.; Knudsen, P. The Performance and Potentials of the CryoSat-2 SAR and SARIn Modes for Lake Level Estimation. Water 2017, 9, 374. [Google Scholar] [CrossRef]
- Schneider, R.; Godiksen, P.N.; Villadsen, H.; Madsen, H.; Bauer-Gottwein, P. Application of CryoSat-2 altimetry data for river analysis and modelling. Hydrol. Earth Syst. Sci. 2017, 21, 751–764. [Google Scholar] [CrossRef]
- Jiang, L.; Schneider, R.; Andersen, O.; Bauer-Gottwein, P. CryoSat-2 Altimetry Applications over Rivers and Lakes. Water 2017, 9, 211. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; O’Donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process. 2010, 24, 3811–3825. [Google Scholar] [CrossRef]
- Papa, F.; Bala, S.K.; Pandey, R.K.; Durand, F.; Gopalakrishna, V.V.; Rahman, A.; Rossow, W.B. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J. Geophys. Res. Ocean. 2012, 117, C11021. [Google Scholar] [CrossRef]
- Getirana, A.C.V.; Peters-Lidard, C. Estimating water discharge from large radar altimetry datasets. Hydrol. Earth Syst. Sci. 2013, 17, 923–933. [Google Scholar] [CrossRef]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.; Bergé-Nguyen, M.; Cancet, M.; Chaudhary, A.; Crétaux, J.-F.; Frappart, F.; Haines, B.; et al. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef]
Virtual Stations | Missions | Longitude (°) | Latitude (°) | River Width (km) | Distance to the River Mouth (km) |
---|---|---|---|---|---|
SV_229_Ogooué | ENVISAT, SARAL | 13.3533 | −1.3082 | 0.22 | 693.09 |
SV_272_Ivindo | ENVISAT, SARAL | 12.4228 | 0.2542 | 0.20 | 524.91 |
SV_272_Ogooué | ENVISAT, SARAL | 12.3051 | −0.2816 | 0.36 | 477.59 |
SV_315_Ogooué | ENVISAT, SARAL | 11.6422 | −0.0618 | 0.37 | 386.57 |
SV_358_Ngounié | ENVISAT, SARAL | 10.6490 | −1.2761 | 0.20 | 274.948 |
SV_401_Ngounié | ENVISAT, SARAL | 10.3227 | −0.5958 | 0.62 | 193.531 |
SV_401_Ogooué | ERS-2, ENVISAT, SARAL | 10.3045 | −0.5129 | 1.30 | 198.222 |
SV_444_Ogooué | ERS-2, ENVISAT, SARAL | 9.2569 | −1.0722 | 0.59 | 42.582 |
SV_730_Ogooué | SARAL | 12.9154 | −0.8316 | 0.19 | 607.233 |
SV_773_Ogooué | ENVISAT, SARAL | 12.4700 | −0.5595 | 0.23 | 494.696 |
SV_902_lake_Onangué | ERS-2, ENVISAT, SARAL | 9.9912 | −1.0001 | 160.97 | |
SV_902_Ogooué | ERS-2, ENVISAT, SARAL | 10.0280 | −0.8323 | 1.25 | 141.66 |
SV_902_Ogooué_2 | ENVISAT, SARAL | 10.0551 | −0.7091 | 0.32 | 152.215 |
SV_945_lake_Louandé | ENVISAT | 9.6497 | −0.8047 | 107.174 | |
SV_945_lake_Ogognié | ENVISAT, SARAL | 9.6844 | −0.9624 | 101.671 | |
SV_945_Ogooué | ERS-2, ENVISAT, SARAL | 9.6755 | −0.9220 | 1.19 | 97.413 |
SV_945_Ogooué_2 | ERS-2, ENVISAT, SARAL | 9.6571 | −0.8382 | 0.47 | 103.125 |
Station 1 | ENVISAT 2nd orbit | 10.6414 | −0.1864 | 0.49 | 127.826 |
Station 2 | ENVISAT 2nd orbit | 10.0208 | −0.8328 | 0.88 | 138.166 |
Station 3 | ENVISAT 2nd orbit | 9.9445 | −0.8082 | 1.17 | 252.246 |
SV_128_Ogooué | SENTINEL-3A | 9.2788 | −1.0638 | 1.23 | 45.271 |
SV_378_Ogooué | SENTINEL-3A | 9.8069 | −0.8454 | 1.24 | 112.654 |
SV_185_lake_Onangué | SENTINEL-3A | 10.1962 | −1.0009 | 169.463 | |
SV_050_Ogooué | SENTINEL-3A | 10.9045 | −0.1177 | 0.30 | 298.329 |
SV_107_Ogooué | SENTINEL-3A | 11.8457 | −0.0803 | 0.37 | 412.048 |
SV_164_Ogooué | SENTINEL-3A | 12.6126 | −0.8438 | 0.31 | 564.01 |
SV_356_Ogooué | SENTINEL-3A | 12.9676 | −0.8423 | 0.30 | 617.561 |
SV_164_Ivindo | SENTINEL-3A | 13.0280 | 1.0330 | 0.19 | 677.105 |
SV_050_Ngounié | SENTINEL-3A | 10.6477 | −1.2728 | 0.35 | 301.24 |
SV_378_lake_Avanga | SENTINEL-3A | 9.7878 | −0.9345 | 112.299 | |
SV_050_Ngounié | SENTINEL-3A | 9.8386 | −0.7021 | 0.23 | 301.24 |
Lambaréné | CRYOSAT-2 | 10.2220 | −0.7139 | ||
SV_185_Ogooué | JASON-2, JASON-3 | 12.0035 | −0.1148 | 0.36 | 430.318 |
SV_096_Ivindo | JASON-2, JASON-3 | 13.0790 | 1.0758 | 0.18 | 687.576 |
Missions | Stations | Estimated Discharge (m3·s−1) | Relative Error (%) | R(-) | RMSE (m3·s−1) |
---|---|---|---|---|---|
In situ | Lambaréné | 4253.427 | 0 | 1 | 0 |
ERS-2 | SV_401_Ogooué | 4951.475 | 16.41 | 0.850 | 1107.647 |
SV_444_0gooué | 5465.756 | 21.45 | 0.141 | 2466.262 | |
SV_902_Ogooué | 4498.633 | 5.76 | 0.987 | 332.152 | |
SV_945_Ogooué | 5104.026 | 19.99 | 0.886 | 920.226 | |
Combined | 4848.378 | 13.99 | 0.755 | 1440.860 | |
ENVISAT | SV_401_Ogooué | 4311.470 | 1.36 | 0.969 | 431.757 |
SV_444_Ogooué | 4281.369 | 0.66 | 0.884 | 804.946 | |
SV_902_Ogooué | 4316.212 | 1.47 | 0.981 | 352.028 | |
SV_945_Ogooué | 4342.597 | 2.09 | 0.922 | 722.334 | |
Combined | 4340.594 | 2.049 | 0.942 | 604.321 | |
SARAL | SV_401_Ogooué | 3927.343 | −7.67 | 0.975 | 470.446 |
SV_444_Ogooué | 3103.856 | −27.023 | 0.947 | 409.759 | |
SV_902_Ogooué | 3851.170 | −9.46 | 0.986 | 346.980 | |
SV_945_Ogooué | 2898.672 | −31.85 | 0.973 | 335.693 | |
Combined | 4060.427 | −4.537 | 0.978 | 396.820 | |
ENVISAT 2nd Orbit | Station 1 | 3850.274 | −9.47 | 0.816 | 868.273 |
Station 2 | 3740.297 | −12.06 | 0.963 | 450.838 | |
Station 3 | 3841.379 | −9.69 | 0.895 | 654.027 | |
Combined | 3839.296 | −9.736 | 0.898 | 679496 | |
SENTINEL-3A | SV_050_Ogooué | 4454.109 | 4.72 | 0.915 | 757.845 |
SV_378_Ogooué | 4210.519 | −1.01 | 0.983 | 316.740 | |
SV_128_Ogooué | 4373.213 | 2.82 | 0.931 | 629.888 | |
Combined | 4262.683 | 0.22 | 0.942 | 597.610 | |
CRYOSAT-2 | Lambaréné | 4188.220 | −1.53 | 0.971 | 408.739 |
SENTINEL-3A + CRYOSAT-2 | Combined | 4118.9275 | −3.162 | 0.967 | 462.141 |
CRYOSAT-2 + SARAL | Combined | 4136.3508 | −2.752 | 0.977 | 405.978 |
CRYOSAT-2 + ENVISAT 2nd orbit | Combined | 4243.2487 | −0.239 | 0.956 | 515.057 |
All missions | Combined | 4252.052 | −0.03 | 0.936 | 701.645 |
Virtual Stations | Rivers or Lakes | Missions | ENVISAT Data Modes | ERS-2 Data Modes | |||
---|---|---|---|---|---|---|---|
320 Hz (%) | 80 Hz (%) | 20 Hz (%) | 330 Hz (%) | 82.5 Hz (%) | |||
SV_229_Ogooué | Ogooué | ENVISAT, SARAL | 99.786 | 0.213 | 0 | 100 | 0 |
SV_272_Ivindo | Ivindo | ENVISAT, SARAL | 96.893 | 1.804 | 1.302 | 58.0 | 42.0 |
SV_272_Ogooué | Ogooué | ENVISAT, SARAL | 98.267 | 0.533 | 1.2 | 6.25 | 93.75 |
SV_315_Ogooué | Ogooué | ENVISAT, SARAL | 91.896 | 6.212 | 1.890 | 100 | 0 |
SV_358_Ngounié | Ngounié | ENVISAT, SARAL | 88.76 | 10.3 | 0.939 | 70.270 | 29.729 |
SV_401_Ngounié | Ngounié | ENVISAT, SARAL | 98.776 | 1.146 | 0.077 | 81.132 | 18.867 |
SV_401_Ogooué | Ogooué | ERS-2, ENVISAT, SARAL | 98.776 | 1.146 | 0.077 | 81.132 | 18.867 |
SV_444_Ogooué | Ogooué | ERS-2, ENVISAT, SARAL | 99.887 | 0.113 | 0 | 85.0 | 15.0 |
SV_730_Ogooué | Ogooué | SARAL | 92.347 | 6.152 | 1.5005 | 34.426 | 65.573 |
SV_773_Ogooué | Ogooué | ENVISAT, SARAL | 99.178 | 0.821 | 0 | 70.588 | 29.411 |
SV_902_lake_Onangué | lake Onangué | ERS-2, ENVISAT, SARAL | 99.669 | 0.259 | 0.070 | 87.804 | 12.195 |
SV_902_Ogooué | Ogooué | ERS-2, ENVISAT, SARAL | 99.669 | 0.259 | 0.070 | 87.804 | 12.195 |
SV_902_Ogooué_2 | Ogooué | ENVISAT, SARAL | 99.669 | 0.259 | 0.070 | 87.804 | 12.195 |
SV_945_lake_Louandé | lake Louandé | ENVISAT | 99.513 | 0.487 | 0 | 100 | 0 |
SV_945_lac_Ogognié | lake Ogognié | ENVISAT, SARAL | 99.513 | 0.487 | 0 | 100 | 0 |
SV_945_Ogooué | Ogooué | ERS-2, ENVISAT, SARAL | 99.513 | 0.487 | 0 | 100 | 0 |
SV_945_Ogooué_2 | Ogooué | ENVISAT | 99.513 | 0.487 | 0 | 100 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogning, S.; Frappart, F.; Blarel, F.; Niño, F.; Mahé, G.; Bricquet, J.-P.; Seyler, F.; Onguéné, R.; Etamé, J.; Paiz, M.-C.; et al. Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué. Remote Sens. 2018, 10, 350. https://doi.org/10.3390/rs10020350
Bogning S, Frappart F, Blarel F, Niño F, Mahé G, Bricquet J-P, Seyler F, Onguéné R, Etamé J, Paiz M-C, et al. Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué. Remote Sensing. 2018; 10(2):350. https://doi.org/10.3390/rs10020350
Chicago/Turabian StyleBogning, Sakaros, Frédéric Frappart, Fabien Blarel, Fernando Niño, Gil Mahé, Jean-Pierre Bricquet, Frédérique Seyler, Raphaël Onguéné, Jacques Etamé, Marie-Claire Paiz, and et al. 2018. "Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué" Remote Sensing 10, no. 2: 350. https://doi.org/10.3390/rs10020350
APA StyleBogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M.-C., & Braun, J.-J. (2018). Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué. Remote Sensing, 10(2), 350. https://doi.org/10.3390/rs10020350