Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis
"> Figure 1
<p>Frequency distribution of the 2927 original Chl measurements, 93 of which were considered valid match-ups. (<b>a</b>) Chl concentration frequency distributions (inset presents the same data binned by order of magnitude). Temporal distributions of Chl concentration for (<b>b</b>) the original and (<b>c</b>) match-up datasets.</p> "> Figure 2
<p>Representation of the different water-types. (<b>a</b>) Classification of the SLEG climatological Rrs using the methodology of [<a href="#B37-remotesensing-10-00265" class="html-bibr">37</a>]. The black line represents the perfect Case-1 relation between Rrs(412)/Rrs(443) and Rrs(555)/Rrs(490). (<b>b</b>) Map of the normalized difference between the climatological SeaWiFS Rrs spectra and the perfect Case-1 line (see the text), with black crosses representing the location of the original Chl samples and grey dots representing the retained Chl samples. The same colour scale applies to both panels.</p> "> Figure 3
<p>Band ratio algorithms. (<b>a</b>) Comparison of the St. Lawrence Estuary and Gulf (SLEG) match-ups (black dots) and SeaBASS [<a href="#B55-remotesensing-10-00265" class="html-bibr">55</a>] datasets (light grey dots). The grey line corresponds to the OC4v4 polynomial fit, and the black line is the linear regression of in situ Chl and corresponding SLEG remote sensing reflectances ratios, with R443/555 = Rrs(443)/Rrs(555), R490/555 = Rrs(490)/Rrs(555) and R510/555 = Rrs(510)/Rrs(555). (<b>b</b>) Scatterplot of in situ versus satellite-derived Chl using the OC4L algorithm.</p> "> Figure 4
<p>Features of the EOF method: (<b>a</b>) stability of the EOF; (<b>b</b>) scatter plot of in situ Chl versus satellite-derived Chl using the EOF, with the dashed line as the 1:1 ratio; (<b>c</b>) all modes of oscillation (solid coloured lines are linear interpolation over wavelengths of the discrete spectral data and are used as a guide to aid visualizing the spectral signature).</p> "> Figure 5
<p>Relative error as a function of (<b>a</b>) Chl concentration and (<b>b</b>) spatial distribution.</p> "> Figure 6
<p>SLEG chlorophyll for 12 October 2003, as predicted by the EOF algorithm.</p> ">
Abstract
:1. Introduction
2. Data and Method
2.1. In Situ Data
2.2. Match-Up Dataset
2.3. Atmospheric Correction
2.4. Performance Evaluation
3. Results
3.1. Performance of Generic Algorithms
3.2. Development of a Chlorophyll Algorithm Using EOF
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Savenkoff, C.; Bourassa, M.N.; Baril, D.; Benoît, H.P. Identification of Ecologically and Biologically Significant Areas for the Estuary and Gulf of St. Lawrence; Technical report; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2007; pp. 1–49.
- Lavoie, D.; Starr, M.; Zakardjian, B.; Larouche, P. Identification of Ecologically and Biologically Significant Areas (EBSA) in the Estuary and Gulf of St. Lawrence: Primary Production; Technical report; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2007; pp. 1–29.
- Cullen, J.J. The Deep Chlorophyll Maximum: Comparing Vertical Profiles of Chlorophyll a. Can. J. Fish. Aquat. Sci. 1982, 39, 791–803. [Google Scholar] [CrossRef]
- Smith, R.C.; Eppley, W.; Baker, K.S. Correlation of primary production as measured aboard in Southern California coastal waters and as estimated from satellite chlorophyll images. Mar. Biol. 1982, 66, 1–8. [Google Scholar] [CrossRef]
- Platt, T.; Herman, A.W. Remote sensing of phytoplankton in the sea: Surface-layer chlorophyll as an estimate of water-column chlorophyll and primary production. Int. J. Remote Sens. 1983, 4, 343–351. [Google Scholar] [CrossRef]
- Laws, E.A.; Falkowski, P.G.; Smith, W.O.; Ducklow, H.; McCarthy, J.J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 2000, 14, 1231–1246. [Google Scholar] [CrossRef]
- Wilson, C. The rocky road from research to operations for satellite ocean-colour data in fishery management. J. Mar. Sci. 2001, 68, 677–686. [Google Scholar] [CrossRef]
- Côté, B.; Platt, T. Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 1983, 28, 320–344. [Google Scholar] [CrossRef]
- VonDassow, P.; Montresor, M. Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J. Plankton Res. 2011, 33, 3–12. [Google Scholar] [CrossRef]
- Fuentes-Yaco, C.; Vezina, A.; Larouche, P.; Vigneau, C.; Gosselin, M.; Levasseur, M. Phytoplankton pigment in the Gulf of St. Lawrence, Canada, as determined by the Coastal Zone Color Scanner—Part 1: Spatio-temporal variability. Cont. Shelf Res. 1997, 17, 1421–1439. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Nieke, B.; Reuter, R.; Heuermann, R.; Wang, H.; Babin, M.; Therriault, J.C. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters). Cont. Shelf Res. 1997, 17, 235–252. [Google Scholar] [CrossRef]
- Çizmeli, S.A. Parameterization, Regionalization and Radiative Transfer Coherence of Optical Measurements Acquired in the St-Lawrence Ecosystem. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2008. [Google Scholar]
- Carder, K.L.; Steward, R.G.; Harvey, G.R.; Ortner, P.B. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 1989, 34, 68–81. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Darecki, M.; Stramski, D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Biggs, D.C.; Carder, K.L.; Nababan, B.; Nadeau, D.; Vanderbloemen, J. Comparison of ship and satellite bio-optical measurements on the continental margin of the NE Gulf of Mexico. Int. J. Remote Sens. 2003, 24, 2597–2612. [Google Scholar] [CrossRef]
- Yayla, K.M. Approche Empirique de la Télédétection de la Chlorophylle D’eaux à Complexité Optique Dans L’estuaire et le Golfe du Saint-Laurent. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2009. [Google Scholar]
- Jacques, A. La Télédétection Passive de la Chlorophylle Dans L’estuaire Maritime du Saint-Laurent Optimisation Spectrale Des Algorithmes et Application au SeaWiFs. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2001. [Google Scholar]
- Gregg, W.W.; Casey, N. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens. Environ. 2004, 93, 463–479. [Google Scholar] [CrossRef]
- IOCCG. Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology In Reports of the International Ocean Colour Coordinating Group; Platt, T., Hoepffner, N., Stuart, V., Brown, C., Eds.; IOCCG: Dartmouth, NS, Canada, 2008; Volume 7. [Google Scholar]
- Loisel, H.; Vantrepotte, V.; Ouillon, S.; Ngoc, D.D.; Herrmann, M.; Tran, V.; Mériaux, X.; Dessailly, D.; Jamet, C.; Duhaut, T.; et al. Assessment and analysis of the chlorophyll-a concentration variability over the Vietnamese coastal waters from the MERIS ocean color sensor (2002–2012). Remote Sens. Environ. 2017, 190, 217–232. [Google Scholar] [CrossRef]
- Gohin, F.; Druon, J.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Mueller, J. Ocean color spectra measured off the Oregon coast: Characteristic vectors. Appl. Opt. 1976, 15, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Duan, H.; Barnes, B.B.; Ma, R. An EOF-based algorithm to estimate chlorophyll a concentrations in Taihu Lake from MODIS land-band measurements: Implications for near real-time applications and forecasting models. Remote Sens. 2014, 6, 10694–10715. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C.; Cannizzaro, J.P.; Craig, S.E.; Hallock, P.; Jones, D.L.; Lehrter, J.C.; Melo, N.; Schaeffer, B.A.; Zepp, R. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements. Remote Sens. Environ. 2014, 140, 519–532. [Google Scholar] [CrossRef]
- Fichot, C.G.; Sathyendranath, S.; Miller, W.L. SeaUV and SeaUV C: Algorithms for the retrieval of UV/Visible diffuse attenuation coefficients from ocean color. Remote Sens. Environ. 2008, 112, 1584–1602. [Google Scholar] [CrossRef]
- Craig, S.; Jones, C.; Li, W.; Lazin, G.; Horne, E.; Caverhill, C.; Cullen, J. Deriving optical metrics of coastal phytoplankton biomass from ocean colour. Remote Sens. Environ. 2012, 119, 72–83. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. Database of the Environmental Data Management System (EDMS) from Maurice Lamontagne Institute (MLI). St. Lawrence Global Observatory’s SLGO porta. Available online: http://ogsl.ca (accessed on 12 November 2015).
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D.H. Fluorometric Determination of Chlorophyll. Journal Conseil International pour l’Exploration de la Mer 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Welschmeyer, N.A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewingWide Field-of-view Sensor (SeaWiFS) Ocean Colour Data. NASA OB.DAAC: Greenbelt, MD, USA. Available online: https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/L1 (accessed on 12 November 2015).
- Bailey, S.; Werdell, P. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A. Uncertainties in coastal ocean color products: Impacts of spatial sampling. Remote Sens. Environ. 2016, 181, 14–26. [Google Scholar] [CrossRef]
- Devine, L.; Plourde, S.; Starr, M.; St-Pierre, J.F.; St-Amand, L.; Joly, P.; Galbraith, P.S. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2014; Technical report; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2015.
- Lee, Z.; Hu, C. Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. Remote Sens. Environ. 2006, 101, 270–276. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. year=2014 Sea-viewingWide Field-of-view Sensor (SeaWiFS) Ocean Colour Data, NASA OB.DAAC, Greenbelt, MD, USA. Available online: https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Binned/Cumulative/RRS (accessed on 12 November 2015).
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Arnone, R.A.; Gould, R.W.; Ransibrahmanakul, V. A Partly Coupled Ocean–Atmosphere Model for Retrieval of Water-Leaving Radiance from SeaWiFS in Coastal Waters; Technical Report 22, NASA technical memorandum; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
- Bailey, S.W.; Franz, B.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Franz, B.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef] [PubMed]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.J.; Moore, G. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef]
- Larouche, P.; Boyer-Villemaire, U. Suspended particulate matter in the St. Lawrence estuary and Gulf surface layer and development of a remote sensing algorithm. Estuar. Coast. Shelf Sci. 2010, 90, 241–249. [Google Scholar] [CrossRef]
- Legendre, P. lmodel2: Model II Regression. R package version 1.7-2. 2014. Available online: https://cran.r-project.org/web/packages/lmodel2/lmodel2.pdf (accessed on 12 November 2015).
- Szeto, M.; Werdell, P.J.; Moore, T.S.; Campbell, J.W. Are the world’s oceans optically different? J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Siegel, D.; Behrenfeld, M.; Maritorena, S.; McClain, C.; Antoine, D.; Bailey, S.; Bontempi, P.; Boss, E.; Dierssen, H.; Doney, S.; et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef]
- Darecki, M.; Kaczmarek, S.; Olszewski, J. SeaWiFS ocean colour chlorophyll algorithms for the southern Baltic Sea. Int. J. Remote Sens. 2005, 26, 247–260. [Google Scholar] [CrossRef]
- Mustapha, S.B.; Bélanger, S.; Larouche, P. Evaluation of ocean color algorithms in the southeastern Beaufort Sea, Canadian Arctic: New parameterization using SeaWiFS, MODIS, and MERIS spectral bands. Can. J. Remote Sens. 2012, 38, 535–556. [Google Scholar] [CrossRef]
- Garcia, V.M.T.; Signorini, S.; Garcia, C.A.E.; McClain, C.R. Empirical and semi-analytical chlorophyll algorithms in the south-western Atlantic coastal region (25–40 S and 60–45 W). Int. J. Remote Sens. 2006, 27, 1539–1562. [Google Scholar] [CrossRef]
- Oguz, T.; Ediger, D. Comparision of in situ and satellite-derived chlorophyll pigment concentrations, and impact of phytoplankton bloom on the suboxic layer structure in the western Black Sea during May–June 2001. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1923–1933. [Google Scholar] [CrossRef]
- Werdell, P.J.; Bailey, S.W.; Franz, B.A.; Harding, L.W.; Feldman, G.C.; McClain, C.R. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens. Environ. 2009, 113, 1319–1330. [Google Scholar] [CrossRef]
- Tang, S.; Chen, C.; Zhan, H.; Zhang, J.; Yang, J. An appraisal of surface chlorophyll estimation by satellite remote sensing in the South China Sea. Int. J. Remote Sens. 2008, 29, 6217–6226. [Google Scholar] [CrossRef]
- Wang, J.; Cota, G.F. Remote-sensing reflectance in the Beaufort and Chukchi seas: Observations and models. Appl. Opt. 2003, 42, 2754–2765. [Google Scholar] [CrossRef] [PubMed]
- Werdell, P.J.; Fargion, G.S.; McClain, C.R.; Bailey, S.W. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation. 2002. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020091607.pdf (accessed on 23 April 2016).
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 2002, 41, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Dong, Q.; Hu, C.M.; Lin, G.; Li, Y.; Shang, S. On the consistency of MODIS chlorophyll a products in the northern South China Sea. Biogeosciences 2014, 11, 269. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, R package version 1.7.8; Northwestern University: Evanston, IL, USA, 2017. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood pri nciple. In Proceedings of the 2nd International Symposium on Information Theory, Budapest, Hungary, 2–8 September 1973; pp. 267–281. [Google Scholar]
- Anderson, D.R.; Burnham, K.P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 2002, 66, 912–918. [Google Scholar] [CrossRef]
- Morel, A. In-water and remote measurement of ocean color. Bound.-Layer Meteorol. 1980, 18, 177–201. [Google Scholar] [CrossRef]
- Mao, Z.; Stuart, V.; Pan, D.; Chen, J.; Gong, F.; Huang, H.; Zhu, Q. Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance. Ecol. Inform. 2010, 5, 359–366. [Google Scholar] [CrossRef]
- Isada, T.; Hirawake, T.; Kobayashi, T.; Nosaka, Y.; Natsuike, M.; Imai, I.; Suzuki, K.; Saitoh, S.I. Hyperspectral optical discrimination of phytoplankton community structure in Funka Bay and its implications for ocean color remote sensing of diatoms. Remote Sens. Environ. 2015, 159, 134–151. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Zibordi, G.; Berthon, J.F.; Canuti, E.; Kajiyama, T. Performance and applicability of bio-optical algorithms in different European seas. Remote Sens. Environ. 2012, 124, 402–412. [Google Scholar] [CrossRef]
- Kajiyama, T.; D’Alimonte, D.; Zibordi, G. Regional algorithms for European seas: A case study based on MERIS data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 283–287. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Chang, C.H. Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP). Opt. Express 2015, 23, 5417–5437. [Google Scholar] [CrossRef] [PubMed]
- Spyrakos, E.; Vilas, L.G.; Palenzuela, J.M.T.; Barton, E.D. Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sens. Environ. 2011, 115, 2471–2485. [Google Scholar] [CrossRef]
- Bélanger, S.; Carrascal-Leal, C.; Jaegler, T.; Larouche, P.; Galbraith, P. Assessment of Radiometric Data from a Buoy in the St. Lawrence Estuary. J. Atmos. Ocean. Technol. 2017, 34, 877–896. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optically Complex, Waters. In Reports of the International Ocean Colour Coordinating Group; IOCCG: Dartmouth, NS, Canada, 2000; Volume 3. [Google Scholar]
Method | R | Bias (log mg m) | RMSE (log mg m) | APD (%) | N | %N < 50% Error | Slope | Intercept |
---|---|---|---|---|---|---|---|---|
OC4v4 | 0.36 | 0.24 | 0.38 | 140 | 93 | 34 | 0.72 | 0.2 |
OC4L | 0.35 | ≈0 | 0.29 | 56 | 93 | 66 | 0.59 | −0.059 |
GSM01 | 0.27 | −0.073 | 0.33 | 53 | 58 | 59 | 1.1 | −0.065 |
GIOP | 0.22 | −0.083 | 0.38 | 54 | 64 | 52 | 1.2 | −0.041 |
EOF | 0.65 | ≈0 | 0.22 | 41 | 93 | 71 | 0.8 | −0.028 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laliberté, J.; Larouche, P.; Devred, E.; Craig, S. Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis. Remote Sens. 2018, 10, 265. https://doi.org/10.3390/rs10020265
Laliberté J, Larouche P, Devred E, Craig S. Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis. Remote Sensing. 2018; 10(2):265. https://doi.org/10.3390/rs10020265
Chicago/Turabian StyleLaliberté, Julien, Pierre Larouche, Emmanuel Devred, and Susanne Craig. 2018. "Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis" Remote Sensing 10, no. 2: 265. https://doi.org/10.3390/rs10020265
APA StyleLaliberté, J., Larouche, P., Devred, E., & Craig, S. (2018). Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis. Remote Sensing, 10(2), 265. https://doi.org/10.3390/rs10020265