A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China
"> Figure 1
<p>The coarse albedo validation procedure over rugged terrain.</p> "> Figure 2
<p>The contributions of incident and outgoing radiant flux over a coarse scale pixel; direct, diffuse and terrain irradiances.</p> "> Figure 3
<p>Simulated DEM with Gaussian height distributions.</p> "> Figure 4
<p>Study area: (<b>A</b>) the overview of the study area; (<b>B</b>) the location of the Automatic Weather Stations (AWSs) in the DEM imageries; and (<b>C</b>) one example of the AWSs.</p> "> Figure 5
<p>Scatter plots and the histogram evaluate the aggregated coarse scale albedo (using a Mountain-Radiation-Transfer (MRT)-based model) against the reference simulated coarse scale albedo for (<b>A</b>) the aggregated coarse scale BSA vs. the simulated coarse scale BSA; (<b>B</b>) the bias histogram of the aggregated coarse scale BSA minus the reference coarse scale BSA; (<b>C</b>) the aggregated coarse scale WSA vs. the simulated coarse scale WSA; and (<b>D</b>) the bias between the nine aggregated coarse scale WSAs and the reference simulated WSAs following the increase of the mean slope.</p> "> Figure 6
<p>Validation results at different solar zenith angle: (<b>A</b>) the solar zenith angle is 0°; (<b>B</b>) the Solar Zenith Angle (SZA) is 20°; (<b>C</b>) the SZA is 40°; and (<b>D</b>) the SZA is 60°.</p> "> Figure 7
<p>Validation of the MRT-based upscaling model at different slopes (<b>A</b>) the slope is smaller than 10 degree; (<b>B</b>) the slope is greater than 10 degree and less than 20 degree; (<b>C</b>) the slope is between 20 and 30 degrees; and (<b>D</b>) the slope is larger than 30 degrees.</p> "> Figure 7 Cont.
<p>Validation of the MRT-based upscaling model at different slopes (<b>A</b>) the slope is smaller than 10 degree; (<b>B</b>) the slope is greater than 10 degree and less than 20 degree; (<b>C</b>) the slope is between 20 and 30 degrees; and (<b>D</b>) the slope is larger than 30 degrees.</p> "> Figure 8
<p>Scatter plots and the histogram evaluate the fine scale albedo against simulated coarse scale albedo for: (<b>A</b>) the aggregated fine scale BSA vs. the simulated coarse scale BSA; (<b>B</b>) the histogram of the aggregated fine scale BSA minus the coarse scale BSA; (<b>C</b>) the aggregated fine scale WSA vs. the simulated coarse scale WSA; and (<b>D</b>) the bias distribution of the aggregated fine scale WSA and the coarse scale WSA following the increase of the mean slopes.</p> "> Figure 9
<p>Scatter plots and bias histogram between fine scale albedos and the in situ albedos: (<b>A</b>) in situ albedo vs. the fine scale albedo; (<b>B</b>) Bias histogram of fine scale blue-sky albedo minus the in situ albedo The colors refer to the density of points (from highest (red) to lowest (blue).</p> "> Figure 10
<p>Coarse scale MCD43A3 C6 albedos validation by comparison with the aggregated coarse scale albedos: (<b>A</b>) the aggregated coarse scale BSAs vs. the MCD43A3 C6 BSAs; (<b>B</b>) the aggregated coarse scale WSAs vs. the MCD43A3 C6 WSAs. The colors refer to the density of points (from highest (red) to lowest (blue).</p> "> Figure 11
<p>Coarse scale MCD43A3 C6 products validation by comparing with the aggregated fine scale albedo at different mean slopes. The colors refer to the density of points (from highest (red) to lowest (blue).</p> "> Figure 11 Cont.
<p>Coarse scale MCD43A3 C6 products validation by comparing with the aggregated fine scale albedo at different mean slopes. The colors refer to the density of points (from highest (red) to lowest (blue).</p> ">
Abstract
:1. Introduction
2. Multi-Scale Validation Methodology
2.1. Multi-Scale Validation Procedure over Rugged Terrain
2.2. MRT-Based Albedo Upscaling Model over Rugged Terrain
2.3. Fine Scale Albedo Retrieval Algorithm over Rugged Terrain
3. The Experimental Area and Dataset
3.1. Simulated Coarse Scale and Fine Scale Albedos
3.2. In Situ Albedo Measurements
3.3. Satellite Imagery
4. Results
4.1. Assessment of the MRT-Based Upscaling Model
4.1.1. Accuracy of Using MRT-based Albedo Upscaling Model
4.1.2. Accuracy Analysis by using the Linear Weighted Average Upscaling Model
4.2. Application of MRT-Based Upscaling Model for MODIS Albedo Validation
4.2.1. Accuracy Assessment of HJ Albedo
4.2.2. Comparison of the Aggregated Coarse Scale Albedo with MODIS Albedo Products
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Dickinson, R.E. Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Lucht, W.; Hyman, A.H.; Strahler, A.H.; Barnsley, M.J.; Hobson, P.; Muller, J.P. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape. Remote Sens. Environ. 2000, 74, 85–98. [Google Scholar] [CrossRef]
- Lucht, W. Expected retrieval accuracies of bidirectional reflectance and albedo from EoS-MODIS and MISR angular sampling. J. Geophys. Res. Atmos. 1998, 103, 8763–8778. [Google Scholar] [CrossRef]
- You, D.; Wen, J.; Xiao, Q.; Liu, Q.; Liu, Q.; Tang, Y.; Dou, B.; Peng, J. Development of a high resolution BRDF/albedo product by fusing airborne CASI reflectance with MODIS daily reflectance in the Oasis area of the Heihe river basin, China. Remote Sens. 2015, 7, 6784–6807. [Google Scholar] [CrossRef]
- Li, X. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci. China Earth Sci. 2014, 57, 80–87. [Google Scholar] [CrossRef]
- Jin, Y. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.; Zhou, X.; Sparrow, M.; Ma, M.; Sun, Z.; Jiang, W. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan plateau. J. Geophys. Res. Atmos. 2004, 109, D05107. [Google Scholar] [CrossRef]
- Salomon, J.G.; Schaaf, C.B.; Strahler, A.H.; Gao, F. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1555–1565. [Google Scholar] [CrossRef]
- Susaki, J.; Yasuoka, Y.; Kajiwara, K.; Honda, Y.; Hara, K. Validation of MODIS albedo products of paddy fields in Japan. IEEE Trans. Geosci. Remote Sens. 2007, 45, 206–217. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Schaaf, C.L.; Strahler, A.H. Evaluation of moderate resolution imaging spectroradiometer land surface visible and shortwave albedo products at fluxnet sites. J. Geophys. Res. Atmos. 2010, 115, 1383–1392. [Google Scholar] [CrossRef]
- Wang, X.; Zender, C.S. MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in greenland. Remote Sens. Environ. 2010, 114, 563–575. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Román, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of moderate resolution imaging spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Román, M.O.; Gatebe, C.K.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.G.; He, T.; Liang, S.; Schaaf, C.B. Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1393–1404. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Roman, M.O.; Shuai, Y.M.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Wen, J.; Liu, Q.; Tang, Y.; Wang, L.; Dou, B.; You, D.; Sun, C.; Zhao, X.; et al. Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Sci. China Earth Sci. 2014, 58, 573–588. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Sun, Q.; Liu, Y.; Schaaf, C.; Wang, Z.; Román, M.O. Estimating the effective spatial resolution of the operational BRDF, albedo, and NADIR reflectance products from MODIS and VIIRS. Remote Sens. Environ. 2016, 175, 52–64. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q. Evaluation of the VIIRS BRDF, albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G. Intercomparison of MODIS albedo retrievals and in situ measurements across the global fluxnet network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Lin, X.; Wen, J.; Tang, Y.; Ma, M.; You, D.; Dou, B.; Wu, X.; Zhu, X.; Xiao, Q.; Liu, Q. A web-based land surface remote sensing products validation system (LAPVAS): Application to albedo product. Int. J. Digit. Earth 2017, 11, 1–21. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (Collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; Liu, Q.; Peng, J.; Dou, B.; Li, X.; You, D.; Tang, Y.; Liu, Q. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of modis albedo products preliminary validation over Northern China. Remote Sens. Environ. 2016, 184, 25–39. [Google Scholar] [CrossRef]
- Liang, S.L.; Fang, H.L.; Chen, M.Z.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Disney, M.; Lewis, P.; Thackrah, G.; Quaife, T.; Barnsley, M. Comparison of MODIS broadband albedo over an agricultural site with ground measurements and values derived from earth observation data at a range of spatial scales. Int. J. Remote Sens. 2004, 25, 5297–5317. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Liu, Q.; Xiao, Q.; Li, X. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. Int. J. Remote Sens. 2009, 30, 2875–2896. [Google Scholar] [CrossRef]
- Schaaf, C.; Li, X.; Strahler, A. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1186–1193. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A.; Dutton, E.G. Validation of moderate resolution imaging spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Cherubini, F.; Vezhapparambu, S.; Bogren, W.; Astrup, R.; Strømman, A.H. Spatial, seasonal, and topographical patterns of surface albedo in norwegian forests and cropland. Int. J. Remote Sens. 2017, 38, 4565–4586. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, X.; Liu, Q.; Tang, Y.; Dou, B. An improved land-surface albedo algorithm with DEM in rugged terrain. IEEE Geosci. Remote Sens. Lett. 2014, 11, 883–887. [Google Scholar]
- Proy, C.; Tanre, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Wen, J.G.; Liu, Q.H. Scale effect and scale correction of land-surface albedo in rugged terrain. Int. J. Remote Sens. 2009, 30, 5397–5420. [Google Scholar] [CrossRef]
- Liang, S.; Lewis, P.; Dubayah, R.; Qin, W.; Shirey, D. Topographic effects on surface bidirectional reflectance scaling. J. Remote Sens. 1997, 1, 82–93. [Google Scholar]
- Jin, Y.; Schaaf, C.B.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W.; Liang, S. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res. Atmos. 2003, 108, 347–362. [Google Scholar] [CrossRef]
- Allen, R.G.; Trezza, R.; Tasumi, M. Analytical integrated functions for daily solar radiation on slopes. Agric. For. Meteorol. 2006, 139, 55–73. [Google Scholar] [CrossRef]
- Dozier, J.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Lewis, P.; Barnsley, M.J. Influence of the sky radiance distribution on various formulations of the earth surface albedo. In Proceedings of the International Symposium on Physical Measurements and Signatures in Remote Sensing, Paris, France, 17–21 January 1994. [Google Scholar]
- MODIS User Guide V006. Available online: https://www.umb.edu/spectralmass/terra_aqua_modis/modis_brdf_albedo_product_mcd43 (accessed on 19 November 2017).
- Qu, Y.; Liang, S.L.; Liu, Q.; He, T.; Liu, S.H.; Li, X.W. Mapping surface broadband albedo from satellite observations: A review of literatures on algorithms and products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.Z.; Qu, Y.; Liu, N.F.; Liu, S.H.; Tang, H.R.; Liang, S.L. Preliminary evaluation of the long-term glass albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term global land surface satellite (glass) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Tang, Y.; Dou, B.; You, D.; Xiao, Q.; Liu, Q.; Li, X. Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe river basin, china. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Borel, C.C.; Gerstl, S.A.W.; Powers, B.J. The radiosity method in optical remote-sensing of structured 3-D surfaces. Remote Sens. Environ. 1991, 36, 13–44. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Ma, L.; Zhao, E.; Li, C. Inversion of the prosail model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The sail model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Matkan, A.A.; Ahangar, A.D. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G. Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 2009, 114, 2191–2196. [Google Scholar] [CrossRef]
- Ma, M.; Che, T.; Li, X.; Xiao, Q.; Zhao, K.; Xin, X. A prototype network for remote sensing validation in China. Remote Sens. 2015, 7, 5187–5202. [Google Scholar] [CrossRef]
- Sailor, D.J.; Resh, K.; Segura, D. Field measurement of albedo for limited extent test surfaces. Sol. Energy 2006, 80, 589–599. [Google Scholar] [CrossRef]
- Farr, T.G.; Werner, M.; Kobrick, M. The Shuttle Radar Topography Mission: Introduction to Special Session; EGS-AGU-EUG Joint Assembly: Nice, France, 2003; pp. 37–55. [Google Scholar]
- Global Land Cover Facility. Available online: http://glcf.umd.edu/data/srtm/ (accessed on 19 November 2017).
- Sun, G.; Ranson, K.J.; Kharuk, V.I.; Kovacs, K. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens. Environ. 2003, 88, 401–411. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.W.; Tsang, T.; Strugnell, N.C.; Zhang, X.Y.; Jin, Y.F.; Muller, J.P.; et al. First operational BRDF, albedo NADIR reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, J.; Xie, L.; Zhang, H.; Yan, G.; He, L.; Li, X. Initial validation of MODIS albedo product by using field measurements and airborne multiangular remote sensing observations. J. Remote Sens. 2005, 9, 64–72. [Google Scholar]
- Schaaf, C.B.; Wang, Z.; Strahler, A.H. Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in greenland. Remote Sens. Environ. 2011, 115, 1296–1300. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Xue, H.; Bloom, H.J.; Wang, J.; Jin, H.; Bi, J. Validation of the MODIS albedo product and improving the snow albedo retrieval with additional AMSR-E data in Qinghai-Tibet plateau. SPIE Opt. Eng. Appl. 2010, 7811, 781108. [Google Scholar] [CrossRef]
- Román, M.O.; Gatebe, C.K.; Schaaf, C.B.; Poudyal, R.; Wang, Z.; King, M.D. Variability in surface brdf at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sens. Environ. 2011, 115, 2184–2203. [Google Scholar] [CrossRef]
- Dozier, J.; Outcalt, S.I. An approach toward energy balance simulation over rugged terrain. Geogr. Anal. 1979, 11, 65–85. [Google Scholar] [CrossRef]
- Duguay, C.R.; Ledrew, E.F. Estimating surface reflectance and albedo from Landsat-5 thematic mapper over rugged terrain. Photogramm. Eng. Remote Sens. 1992, 58, 551–558. [Google Scholar]
- Smith, J.A.; Lin, T.L.; Ranson, K.J. The lambertian assumption and Landsat data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Richter, R. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. Int. J. Remote Sens. 1997, 18, 1099–1111. [Google Scholar] [CrossRef]
- Sandmeier, S.; Itten, K.I. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Trans. Geosci. Remote Sens. 1997, 35, 708–717. [Google Scholar] [CrossRef]
- Kimes, D.S.; Kirchner, J.A. Modeling the effects of various radiant transfers in mountainous terrain on sensor response. IEEE Trans. Geosci. Remote Sens. 1981, 2, 100–108. [Google Scholar] [CrossRef]
- Hansen, L.B.; Kamstrup, N.; Hansen, B.U. Estimation of net short-wave radiation by the use of remote sensing and a digital elevation model—A case study of a high arctic mountainous area. Int. J. Remote Sens. 2002, 23, 4699–4718. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Solar Zenith Angle, SZA (degree) | 0–60 (Interval 10) |
Solar Azimuth Angle, SAA (degree) | 0–360 (Interval 30) |
View Zenith Angle, VZA (degree) | 0–90 (Interval 10) |
View Azimuth Angle, VAA (degree) | 0–360 (Interval 30) |
Leaf Chlorophyll a + b Concentration, Cab(μg/cm2) | 40 |
carotenoid content, Car (μg/cm2) | 8 |
equivalent water thickness, Cw (g/cm2) | 0.01 |
dry matter content, Cm (g/cm2) | 0.009 |
scene leaf area index, LAI (m2/m2) | 3 |
average leaf angle, ALA (degree) | 30 |
structure coefficient (N) | 1.5 |
hot-spot size parameter(m/m) | 0.01 |
Soil brightness parameter | 1 |
Filter | Exaggeration = 1 | Exaggeration = 10 | Exaggeration = 20 |
---|---|---|---|
Mean Slope | Mean Slope | Mean Slope | |
1 × 1 | 3.38 | 29.69 | 47.18 |
3 × 1 | 2.7 | 24.68 | 41.25 |
5 × 1 | 1.98 | 18.76 | 33.23 |
Site Name | Lat/Lon/Ele | Land Covers | Slope | Mean Slope | Time Periods |
---|---|---|---|---|---|
(Deg/Deg/M) | (Deg) | (Deg) | |||
A’rou Super | 38.047/100.464/3017 | Grassland | 1.148 | 2.5 | 2013, 2014 |
A’rou Sunny | 38.09/100.520/3579 | Grassland | 5.746 | 11.64 | 2013, 2014 |
A’rou Shady | 37.984/100.411/3585 | Grassland | 9.871 | 15.703 | 2013, 2014 |
E’bu | 37.949/100.915/3355 | Grassland | 2.316 | 3.376 | 2013, 2014 |
Huang ZangSi | 38.225/100.192/2651 | Cropland | 4.764 | 6.503 | 2013, 2014 |
Huang CaoGou | 38.003/100.731/3196 | Grassland | 6.968 | 3.917 | 2013, 2014 |
Jing YangLing | 37.838/101.116/3793 | Grassland | 5.206 | 10.85 | 2013, 2014 |
Zhang Ye | 38.975/100.446/1456 | Cropland | 4.847 | 2.882 | 2009, 2013, 2014 |
Hua ZhaiZi | 38.765/100.319/1740 | Desert | 5.206 | 3.775 | 2009, 2013, 2014 |
Guan Tan | 38.534/100.250/2839 | Forest | 14.943 | 11.418 | 2009 |
A’rou | 38.051/100.457/2993 | Grassland | 3.554 | 3.671 | 2009 |
Bing Gou | 38.067/100.222/3438 | Grassland | 4.274 | 10.573 | 2009 |
Ya Kou | 38.014/100.242/4137 | Grassland | 8.432 | 9.504 | 2009 |
Ying Ke | 38.858/100.41/1517 | Cropland | 1.148 | 2.296 | 2009 |
Ma LianTan | 38.548/100.296/2827 | Grassland | 15.42 | 18.561 | 2009 |
Parameters | Aggregated Fine Scale BSA (MRT-Based Upscaling Model) vs. Simulated Coarse Scale BSA | Aggregated Fine Scale BSA (Linear Weighted Average Upscaling Model) vs. Simulated Coarse Scale Albedo BSA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Bias | MAPE | RMSE | R2 | N | Bias | MAPE | RMSE | R2 | |
SZA = 0° | 117 | −0.0013 | 0.96% | 0.0024 | 0.9941 | 117 | −0.0389 | 16.79% | 0.0557 | 0.9634 |
SZA = 10° | 117 | 0.0013 | 0.93% | 0.0024 | 0.9942 | 117 | −0.0393 | 16.93% | 0.0573 | 0.9532 |
SZA = 20° | 117 | −0.0009 | 0.84% | 0.0023 | 0.9950 | 117 | −0.0416 | 17.68% | 0.0634 | 0.9340 |
SZA = 30° | 117 | 0.0004 | 0.71% | 0.0022 | 0.9965 | 117 | −0.0448 | 18.95% | 0.0743 | 0.6190 |
SZA = 40° | 117 | −0.0002 | 0.74% | 0.0025 | 0.9968 | 117 | −0.0493 | 21.19% | 0.0863 | 0.4593 |
SZA = 50° | 117 | −0.0010 | 0.89% | 0.0030 | 0.9980 | 117 | −0.0411 | 20.82% | 0.0825 | 0.1448 |
SZA = 60° | 117 | −0.0021 | 1.50% | 0.0049 | 0.9971 | 117 | −0.0374 | 23.23% | 0.0923 | 0.2497 |
α* < 10° | 273 | −0.0001 | 0.05% | 0.0001 | 1 | 273 | 0.0002 | 1.26% | 0.0043 | 0.9028 |
10° < α* < 20° | 91 | 0.0002 | 0.68% | 0.0019 | 0.9971 | 91 | −0.0250 | 14.19% | 0.0607 | 0.272 |
20° < α* < 30° | 182 | −0.0004 | 1.32% | 0.0034 | 0.9899 | 182 | −0.0462 | 20.14% | 0.0677 | 0.0302 |
α* > 30° | 273 | −0.0000 | 2.04% | 0.0041 | 0.9943 | 273 | −0.0860 | 37.37% | 0.0809 | 0.1288 |
Overall | 819 | −0.0001 | 0.94% | 0.0029 | 0.9962 | 819 | −0.0481 | 19.43% | 0.0744 | 0.0233 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Wen, J.; Liu, Q.; Xiao, Q.; You, D.; Wu, S.; Hao, D.; Wu, X. A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China. Remote Sens. 2018, 10, 156. https://doi.org/10.3390/rs10020156
Lin X, Wen J, Liu Q, Xiao Q, You D, Wu S, Hao D, Wu X. A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China. Remote Sensing. 2018; 10(2):156. https://doi.org/10.3390/rs10020156
Chicago/Turabian StyleLin, Xingwen, Jianguang Wen, Qinhuo Liu, Qing Xiao, Dongqin You, Shengbiao Wu, Dalei Hao, and Xiaodan Wu. 2018. "A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China" Remote Sensing 10, no. 2: 156. https://doi.org/10.3390/rs10020156
APA StyleLin, X., Wen, J., Liu, Q., Xiao, Q., You, D., Wu, S., Hao, D., & Wu, X. (2018). A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China. Remote Sensing, 10(2), 156. https://doi.org/10.3390/rs10020156