Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series
<p>Study area Canton Aargau located in the northern part of Switzerland.</p> "> Figure 2
<p>Temporal availability of the Sentinel-2 time series data used in this study. Colors indicate cloud coverage per tile.</p> "> Figure 3
<p>Workflow overview. Sentinel-2 (S2); normalized difference vegetation index (NDVI); European Space Agency (ESA); time series (TS); grasslands mowing index (GMI); root mean square error (RMSE).</p> "> Figure 4
<p>Number of observations per pixel in: (<b>a</b>) standard TS; and (<b>b</b>) optimized TS. The white areas were excluded from the analysis. The eastern part of the study area is covered by much denser time series, due to overlap between Sentinel-2 stripes.</p> "> Figure 5
<p>Graph showing illustrative profiles and mowings. The black dots represent available imagery. Mowing date is indicated as AD, however the exact event date is between AD-1 and AD. If mowings were detected in subsequent dates, only the first was considered.</p> "> Figure 6
<p>Images reduction. Numbers indicate iteration in which the image was removed.</p> "> Figure 7
<p>Mowing frequency map of Canton Aargau derived from optimized-shrunken-parcel.</p> "> Figure 8
<p>Representative sub-region in the South of Canton Aargau, based on various spatial mapping units, and standard and optimized time series: (<b>a</b>) illustrative sub-region location in Canton Aargau; (<b>b</b>) orthophoto map of the sub-region; (<b>c</b>) Experiment 1a, optimized-pixel; (<b>d</b>) Experiment 1b, optimized-pixel—aggregated to parcels; (<b>e</b>) Experiment 1c, optimized-pixel—aggregated to shrunken parcels; (<b>f</b>) Experiment 2, optimized-parcel; (<b>g</b>) Experiment 3, optimized-shrunken-parcel; and (<b>h</b>) Experiment 4, standard-shrunken-parcel.</p> "> Figure 9
<p>Percentage of grassland parcel area derived from various spatial mapping units and clouds masking levels within GMI categories, and number of detected mowing events: mean and maximum (frequency). Optimized-pixel—aggregated to parcel (OPxP); Optimized-pixel—aggregated to shrunken parcel (OPxSP).</p> "> Figure 10
<p>Percentage of study area in each category of the grasslands mowing index for the reference experiment (optimized-shrunken-parcel) within selected agricultural land use types. The marginal agricultural land use types were not included. artificial meadows (AM); extensively used meadows (EUM); less intensively used meadows (LIUM); permanent meadows (PM); extensively used pastures (EUP); OP, other pastures (pastures at farm borders).</p> "> Figure 11
<p>Average numbers of mowings detected with reduction of input image dataset, grouped by number of initial mowings.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Data Preprocessing and Grassland Identification
2.3.2. Training and Validation Data
2.3.3. Grass Mowing Index
- NDVI value.
- NDVI difference between AD and proceeding clear observation AD-1.
- NDVI difference between AD and the second-to-last clear observation AD-2.
- Day of the year of the AD.
- Number of days between AD and proceeding clear observation AD-1.
- Number of days between AD and the second-to-last clear observation AD-2.
2.3.4. Accuracy Assessment
3. Results
3.1. Data Preprocessing
3.2. Grass Mowing Index
3.3. Accuracy Assessment
3.4. Imagery Reduction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuemmerle, T.; Levers, C.; Erb, K.; Estel, S.; Jepsen, M.R.; Müller, D.; Plutzar, C.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Editions Quae: Versailles, France, 2014; p. 287. [Google Scholar]
- FOAG. Swiss Agricultural Policy. Objectives, Tools, Prospects; Swiss Federal Office for Agriculture: Bern, Switzerland, 2004; Available online: https://www.cbd.int/financial/pes/swiss-pesagriculturalpolicy.pdf (accessed on 30 June 2018).
- Beaufoy, G.; Baldock, D.; Clark, J. The Nature of Farming: Low Intensity Farming Systems in Nine European Countries. 1994, p. 66. Available online: https://ieep.eu/publications/the-nature-of-farming-low-intensity-farming-systems-in-nine-european-countries (accessed on 30 June 2018).
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Gómez Giménez, M.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Jakimow, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- ESA European Space Agency—Missions—Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 30 June 2018).
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.-R.; Olariu, B.; Mihai, B.-A.; Nistor, C.; Săvulescu, I. Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery. Eur. J. Remote Sens. 2017, 50, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2017, 204, 509–523. [Google Scholar] [CrossRef]
- Lopes, M.; Fauvel, M.; Ouin, A.; Girard, S. Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; Volume 5. [Google Scholar]
- Griffiths, P.; Hostert, P. Integration of Sentinel-2 and Landsat Data for Phenological Characterization of Semi-Natural Vegetation; Boston University: Boston, MA, USA, 2017. [Google Scholar]
- FSO. Food and Agriculture—Pocket Statistics 2017; Federal Statistical Office: Neuchâtel, Switzerland, 2017; p. 36. [Google Scholar]
- ESA. European Space Agency—Products—Sentinel-2 MSI. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c (accessed on 30 June 2018).
- Liang, S.; Yang, C.; Yu, D.; Ma, W. Extracting multiple cropping index based on NDVI time series: A method integrating temporal and spatial information. In Proceedings of the 3rd International Conference on Agro-Geoinformatics, Agro-Geoinformatics, Beijing, China, 11–14 August 2014; pp. 1–5. [Google Scholar]
- Esch, T.; Metz, A.; Marconcini, M.; Keil, M. Differentiation of Crop Types and Grassland by Multi-scale Analysis of Seasonal Satellite Data. In Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 329–339. ISBN 978-94-007-7968-6. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- ESA. European Space Agency—Sentinel-2—Cloud Masks. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 30 June 2018).
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Breon, F.-M.; Colzy, S. Cloud Detection from the Spaceborne POLDER Instrument and Validation against Surface Synoptic Observations. J. Appl. Meteorol. 1999, 38, 777–785. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley-Liss, Div John Wiley & Sons Inc.: New York, NY, USA, 1990; ISBN 0471878766. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 46, 35–46. [Google Scholar] [CrossRef]
- Ginzler, C.; Hobi, M.L. Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory. Remote Sens. 2015, 7, 4343–4370. [Google Scholar] [CrossRef] [Green Version]
- Swisstopo. The Digital hEight Model of Switzerland DHM25. Available online: https://shop.swisstopo.admin.ch/en/products/height_models/dhm25 (accessed on 20 April 2018).
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment using spatial and temporal segmentation of dense Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Griffiths, P.; Van Der Linden, S.; Kuemmerle, T.; Hostert, P. A pixel-based landsat compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 2016, 8, 666. [Google Scholar] [CrossRef]
- Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Gómez Giménez, M.; Della Peruta, R.; De Jong, R.; Keller, A.; Schaepman, M.E. Spatial Differentiation of Arable Land and Permanent Grassland to Improve a Land Management Model for Nutrient Balancing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5655–5665. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Koch, B.; Zimmermann, N.E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agric. Ecosyst. Environ. 2007, 118, 93–108. [Google Scholar] [CrossRef]
OPx | SPx | OP | OSP | SSP | |
---|---|---|---|---|---|
User’s accuracy—grass | 91.2 | 92.1 | 91.7 | 94.6 | 95.3 |
User’s accuracy-non—grass | 72.7 | 69.3 | 59.7 | 59.5 | 56.3 |
Producer’s accuracy—grass | 66.8 | 60.3 | 59.0 | 57.3 | 50.7 |
Producer’s accuracy—non-grass | 93.2 | 94.5 | 91.9 | 95.0 | 96.2 |
Overall accuracy | 79.7 | 76.9 | 72.1 | 72.3 | 68.8 |
Parcel Characteristics—Mean Values | ||||
---|---|---|---|---|
Agricultural Land Use Type | Area (ha) | Tree Fraction (%) | Elevation (m) | Slope (deg) |
AM | 1.20 | 1.6 | 491.9 | 5.6 |
EUM | 0.47 | 10.5 | 474.2 | 9.0 |
LIUM | 0.47 | 11.5 | 489.4 | 9.7 |
PM | 0.85 | 8.5 | 492.5 | 8.6 |
EUP | 0.73 | 16.5 | 484.5 | 14.0 |
OP | 1.02 | 10.8 | 488.8 | 9.4 |
Number of Mowing Events | Mean Difference of Number of Mowing Events from OSP | Overall Accuracy (in Relation to OSP) | ||||||
---|---|---|---|---|---|---|---|---|
r | p-Value | RMSE | Detected Correctly | Omitted | Committed | |||
OSP | 0.723 | 0.30 × 10−8 | 1.058 | 96 | 29 | 9 | - | - |
OP | 0.705 | 1.11 × 10−8 | 1.158 | 88 | 37 | 6 | 0.1 | 80.2 |
OPxP | 0.702 | 1.39 × 10−8 | 1.039 | 87 | 38 | 4 | 0.3 | 68.7 |
OPxSP | 0.718 | 0.45 × 10−8 | 1.149 | 97 | 28 | 8 | 0.1 | 74.7 |
SSP | 0.416 | 2.64 × 10−3 | 2.371 | 116 | 9 | 86 | −2.8 | 4.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolecka, N.; Ginzler, C.; Pazur, R.; Price, B.; Verburg, P.H. Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sens. 2018, 10, 1221. https://doi.org/10.3390/rs10081221
Kolecka N, Ginzler C, Pazur R, Price B, Verburg PH. Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sensing. 2018; 10(8):1221. https://doi.org/10.3390/rs10081221
Chicago/Turabian StyleKolecka, Natalia, Christian Ginzler, Robert Pazur, Bronwyn Price, and Peter H. Verburg. 2018. "Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series" Remote Sensing 10, no. 8: 1221. https://doi.org/10.3390/rs10081221
APA StyleKolecka, N., Ginzler, C., Pazur, R., Price, B., & Verburg, P. H. (2018). Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sensing, 10(8), 1221. https://doi.org/10.3390/rs10081221