A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera
"> Figure 1
<p>Location of study area and experimental design: (<b>a</b>) location of study area in China; (<b>b</b>) map showing Changping District in Beijing City; (<b>c</b>) design of treatments and images of ground-measurement field acquired from unmanned aerial vehicle mounted high-definition digital camera.</p> "> Figure 2
<p>UAV-UHD hyperspectral images and corresponding crop height on (<b>a</b>,<b>b</b>) 21 April; (<b>c</b>,<b>d</b>) 26 April; and (<b>e</b>,<b>f</b>) 13 May 2015.</p> "> Figure 3
<p>Digital camera images and corresponding crop height on (<b>a</b>,<b>b</b>) 21 April; (<b>c</b>,<b>d</b>) 26 April; and (<b>e</b>,<b>f</b>) 13 May 2015.</p> "> Figure 4
<p>Averaged hyperspectral reflectance spectra, averaged DN values, and crop height in the three growing stages: (<b>a</b>) G-hyperspectral; (<b>b</b>) UHD-hyperspectral; (<b>c</b>) calibrated DC-DN values; (<b>d</b>) G-height; (<b>e</b>) UHD-height; (<b>f</b>) DC height. G- indicates data measured by ground-based ASD spectrometer and measuring stick; UHD- indicates data measured using the UHD 185 mounted on the UAV; and DC- indicates data measured by using the digital camera mounted on the UAV.</p> "> Figure 5
<p>Pearson correlation coefficient between VIs, crop height (H), AGB and LAI: (<b>a</b>) G-Vis; (<b>b</b>) UHD-Vis; (<b>c</b>) DC-VIs.</p> "> Figure 6
<p>Relationship between best VIs and AGB: (<b>a</b>) G-LCI; (<b>b</b>) UHD-LCI; (<b>c</b>) DC-r; (<b>d</b>) G-height; (<b>e</b>) UHD-height; (<b>f</b>) DC-height; (<b>g</b>) G-height × LCI; (<b>h</b>) UHD-height × LCI; (<b>i</b>) DC-height × r.</p> "> Figure 7
<p>Relationship between best VIs and LAI: (<b>a</b>) G-LCI; (<b>b</b>) UHD-LCI; (<b>c</b>) DC-B; (<b>d</b>) G-height; (<b>e</b>) UHD-height; (<b>f</b>) DC-height; (<b>g</b>) G-height × LCI; (<b>h</b>) G-height × LCI; (<b>i</b>) DC-height × B.</p> "> Figure 8
<p>Relationship between the predicted and measured winter wheat AGB (t/ha): (<b>a</b>) G-height, VIs, and PLSR; (<b>b</b>) G-height, VIs, and RF; (<b>c</b>) G-VIs and PLSR; (<b>d</b>) G-VIs and RF; (<b>e</b>) UHD-height, VIs, and PLSR; (<b>f</b>) UHD-height, VIs, and RF; (<b>g</b>) UHD-VIs and PLSR; (<b>h</b>) UHD-VIs and RF; (<b>i</b>) DC-height, VIs, and PLSR; (<b>j</b>) DC-height, VIs, and RF; (<b>k</b>) DC-VIs and PLSR; (<b>l</b>) DC-VIs and RF (validation dataset, mean AGB = 4.58 t/ha).</p> "> Figure 9
<p>Relationship between predicted and measured winter wheat LAI (m<sup>2</sup>/m<sup>2</sup>): (<b>a</b>) G-height, VIs, and PLSR; (<b>b</b>) G-height, VIs, and RF; (<b>c</b>) G-VIs and PLSR; (<b>d</b>) G-VIs and RF; (<b>e</b>) UHD-height, VIs, and PLSR; (<b>f</b>) UHD-height, VIs, and RF; (<b>g</b>) UHD-VIs and PLSR; (<b>h</b>) UHD-VIs and RF; (<b>i</b>) DC-height, VIs, and PLSR; (<b>j</b>) DC-height, VIs, and RF; (<b>k</b>) DC-VIs and PLSR; (<b>l</b>) DC-VIs and RF (validation dataset, mean LAI = 3.57 m<sup>2</sup>/m<sup>2</sup>).</p> "> Figure 9 Cont.
<p>Relationship between predicted and measured winter wheat LAI (m<sup>2</sup>/m<sup>2</sup>): (<b>a</b>) G-height, VIs, and PLSR; (<b>b</b>) G-height, VIs, and RF; (<b>c</b>) G-VIs and PLSR; (<b>d</b>) G-VIs and RF; (<b>e</b>) UHD-height, VIs, and PLSR; (<b>f</b>) UHD-height, VIs, and RF; (<b>g</b>) UHD-VIs and PLSR; (<b>h</b>) UHD-VIs and RF; (<b>i</b>) DC-height, VIs, and PLSR; (<b>j</b>) DC-height, VIs, and RF; (<b>k</b>) DC-VIs and PLSR; (<b>l</b>) DC-VIs and RF (validation dataset, mean LAI = 3.57 m<sup>2</sup>/m<sup>2</sup>).</p> "> Figure 10
<p>Above-ground Biomass (t/ha) maps made using UAV-UHD, UAV-DC, and PLSR. (<b>a</b>) UHD on 21 April; (<b>b</b>) UHD on 26 April; (<b>c</b>) UHD on 13 May; (<b>d</b>) DC on 21 April; (<b>e</b>) DC on 26 April; and (<b>f</b>) DC on 13 May. Note: UHD- indicates data measured using the snapshot hyperspectral sensor mounted on the UAV; and DC- indicates data measured by using the digital camera mounted on the UAV.</p> "> Figure 10 Cont.
<p>Above-ground Biomass (t/ha) maps made using UAV-UHD, UAV-DC, and PLSR. (<b>a</b>) UHD on 21 April; (<b>b</b>) UHD on 26 April; (<b>c</b>) UHD on 13 May; (<b>d</b>) DC on 21 April; (<b>e</b>) DC on 26 April; and (<b>f</b>) DC on 13 May. Note: UHD- indicates data measured using the snapshot hyperspectral sensor mounted on the UAV; and DC- indicates data measured by using the digital camera mounted on the UAV.</p> "> Figure 11
<p>Leaf Area Index (m<sup>2</sup>/m<sup>2</sup>) maps based on UAV-UHD and UAV-DC images and with PLSR. (<b>a</b>) UHD on 21 April; (<b>b</b>) UHD on 26 April; (<b>c</b>) UHD on 13 May; (<b>d</b>) DC on 21 April; (<b>e</b>) DC on 26 April; (<b>f</b>) DC on 13 May. Note: UHD- indicates data measured using the snapshot hyperspectral sensor mounted on the UAV; and DC- indicates data measured by using the digital camera mounted on the UAV.</p> ">
Abstract
:1. Introduction
- (1)
- Section 2 presents the field sampling and treatment, the UAV remote-sensing data-acquisition methods, and the methods used to generate DOMs and CSMs. It also discusses the selection of VIs, data analysis, estimation methods, and statistical analysis.
- (2)
- Section 3 presents the results and the precision of the estimates of crop parameters (i) when using only RGB-based VIs and hyperspectral-based VIs; (ii) when using only crop height; (iii) when combining the VIs and crop height; and (iv) when combining the spectral VIs and crop height by using random forest regression and partial least squares regression.
- (3)
- (4)
- Finally, we discuss potential applications in agriculture of UAV-mounted snapshot hyperspectral sensors and high-definition digital cameras.
2. Materials and Methods
2.1. Experiments
2.2. Ground Measurement of Crop Parameters
2.2.1. Measurement of Field Hyperspectral Reflectance
2.2.2. Measurement of Crop Height
2.2.3. Measurement of Leaf Area Index in Laboratory
2.2.4. Measurement of Aboveground Biomass in Laboratory
2.3. Acquisition and Processing of Unmanned Aerial Vehicle Remote-Sensing Images
2.3.1. Unmanned Aerial Vehicle, Snapshot Hyperspectral Sensor, and High-Definition Digital Camera
2.3.2. Radiometric Calibration
2.3.3. Generating Digital Orthophotos Maps and Crop Surface Models
- (1)
- Extract feature points by using the scale-invariant feature transform algorithm
- (2)
- Match features
- (3)
- Apply the structure-from-motion algorithm and a bundle-block adjustment to recover the image poses and build sparse three-dimensional (3D) feature point
- (4)
- Build dense 3D point clouds from camera poses estimated from Step (3) and sparse 3D feature points by using the multi-view stereo algorithm
- (5)
- Build a 3D polygonal mesh of the object surface based on the dense cloud.
- (1)
- In total of 279 soil point coordinates were recorded by using the ARCGIS software (ARCGIS, Environmental Systems Research Institute, Inc., Redlands, CA, USA) and DSM, and then using the ARCGIS extract tools and DSM to obtain the elevation of each soil point.
- (2)
- The field DEM is obtained by interpolating the surface elevation between soil points by using the ARCGIS kriging tools.
- (3)
- The CSM of winter wheat is calculated by using the ARCGIS raster calculator tools.
- (4)
- The crop height of each plot is obtained by using the ARCGIS ROI tools.
2.4. Data Analysis and Estimation Methods
2.4.1. Selection of Vegetation Indices
2.4.2. Statistic Regression Methods
2.4.3. Statistical Analysis
3. Results and Analysis
3.1. Spectral and Crop Height
3.2. Relationships between (i) Vegetation Indices, Crop Height, (ii) Leaf Area Index and Above-Ground Biomass
3.2.1. Relationships between Vegetation Indices and Leaf Area Index and Above-Ground Biomass
3.2.2. Relationships between (i) Crop Height and (ii) Leaf Area Index and Above-Ground Biomass
3.2.3. Relationships between Crop Height and Vegetation Indices and Leaf Area Index and Above-Ground Biomass
3.3. Using Crop Height and Vegetation Indices with Partial Least Square Regressionand Random Forest Regression to Estimate Leaf Area Index and Above-Ground Biomass
3.4. Mapping Leaf Area Index and Above-Ground Biomass
4. Discussion
4.1. Leaf Area Index and Above-Ground Biomass Estimation Using Vegetation Indices
4.2. Leaf Area Index and Above-Ground Biomass Estimation Using Vegetation Indices and Crop Height
4.3. Leaf Area Index and Above-Ground BiomassEstimation Performance of Different Sensors
5. Conclusions
- (i)
- We found that the correlation between the VIs × height (G-height × LCI, DC-height × r and UHD-height × LCI) and AGB is much greater than that when using a single VI or just the crop height. The results indicate that the combined use of VIs and crop height (CSMs) provides more accurate estimates of winter wheat AGB.
- (ii)
- The combined methods (VIs × height) to estimate AGB from UAV-mounted snapshot hyperspectral sensors and high-definition digital cameras provide an accuracy similar to that obtained when using a ground spectrometer to collect the data.
- (iii)
- The winter wheat LAI cannot be properly estimated using crop height over three growing stages. The results suggest that crop height is not a key variable for estimating wheat LAI when using remote-sensing data from all three growing stages. Therefore, the spectral performance of the sensors is crucial for estimating LAI over multiple growing stages. Ranking the LAI estimates from most to least accurate gives ground spectrometer, UAV snapshot hyperspectral sensor, UAV high-definition digital camera.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Rank | AGB | LAI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ground | UAV-UHD | UAV-DC | Ground | UAV-UHD | UAV-DC | |||||||
H, VIs | VIs | H, VIs | VIs | H, VIs | VIs | H, VIs | VIs | H, VIs | VIs | H, VIs | VIs | |
1 | H | BGI | H | BGI | r | r | NDVI | NDVI | NDVI | NDVI | B | B |
2 | BGI | LCI | BGI | LCI | H | VARI | LCI | NPCI | LCI | NPCI | B/G | B/G |
3 | LCI | NPCI | LCI | NPCI | VARI | B/R | NPCI | LCI | NPCI | LCI | G | G |
4 | MCARI | SPVI | MCARI | SPVI | B/R | EXR | OSAVI | OSAVI | BGI | BGI | b | b |
5 | NPCI | MCARI | NPCI | MCARI | R/G | GRVI | MCARI | MCARI | H | OSAVI | B/R | B/R |
6 | SPVI | EVI2 | EVI2 | EVI2 | GRVI | R/G | H | EVI2 | OSAVI | SPVI | R | R |
7 | EVI2 | OSAVI | SPVI | OSAVI | EXR | EXG | EVI2 | SPVI | SPVI | EVI2 | H | r |
8 | OSAVI | NDVI | NDVI | NDVI | b | GLA | SPVI | BGI | EVI2 | MCARI | r | EXG |
9 | NDVI | OSAVI | B/G | B | BGI | MCARI | EXG | VARI | ||||
10 | GLA | G | GLA | GLA | ||||||||
11 | EXG | B/G | VARI | R/G | ||||||||
12 | G | g | g | EXR | ||||||||
13 | B | b | EXR | g | ||||||||
14 | R | R | R/G | GRVI | ||||||||
15 | g | GRVI |
References
- Li, X.; Zhang, Y.; Luo, J.; Jin, X.; Xu, Y.; Yang, W. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 104–112. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Wang, A.; Wang, S.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agric. For. Meteorol. 2017, 247, 476–490. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; van Wieren, S.E.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Waldner, F.; Defourny, P.; Demarez, V.; Morin, D.; Hagolle, O.; Baret, F. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015, 7, 15494–15516. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Taniguchi, K.; Obata, K.; Yoshioka, H. Derivation and approximation of soil isoline equations in the red–near-infrared reflectance subspace. J. Appl. Remote Sens. 2014, 8, 083621. [Google Scholar] [CrossRef] [Green Version]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Okains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1973, 1, 325–333. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
- Gao, S.; Niu, Z.; Huang, N.; Hou, X. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Hoffmeister, D.; Bolten, A.; Curdt, C.; Waldhoff, G.; Bareth, G. High-resolution Crop Surface Models (CSM) and Crop Volume Models (CVM) on field level by terrestrial laser scanning. Int. Soc. Opt. Eng. 2009, 7840, 78400E. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.A.; Schellberg, J.; Bareth, G. Multi-Temporal crop surface models combined with the rgb vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. SPRS Arch. 2016, 991–998. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E. Angular dependence of maize and sugar beet VIs from directional CHRIS/Proba data. Cuore 2005, 5–9. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Academic Press: New York, NY, USA, 1966; pp. 1391–1420. ISBN 0471411256. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Huang, W. Fundamental and Application of Quantitative Remote Sensing in Agriculture; Science China Press: Beijing, China, 2008. [Google Scholar]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Zhang, X.; Li, X. A radiative transfer model-based method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. PFG 2013, 551–562. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Sun, H.; Li, M.Z.; Zhao, Y.; Zhang, Y.E.; Wang, X.M.; Li, X.H. The Spectral Characteristics and Chlorophyll Content at Winter Wheat Growth Stages. Spectrosc. Spectr. Anal. 2010, 30, 192–196. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Feng, H. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 175–182. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
Platforms | Ground | UAV | |
---|---|---|---|
Sensor Types | Spectrometer | Snapshot Spectrometer | Digital camera |
Sensor Names | ASD FieldSpec 3 | UHD 185 | Sony DSC–QX100 |
Field of view | 25° | 19° | 64° |
Image size | - | 1000 × 1000 | 5472 × 3648 |
Working height | 1.3 m | 50 m | 50 m |
Spectral information | 350~2500 nm | 450–950 nm | R, G, B |
Original spectral resolution | 3 nm @ 700 nm; 8.5 nm @ 1400 nm; 6.5 nm @ 2100 nm | 8 nm @ 532 nm | - |
Data spectral resolution | 1 nm | 4 nm | Red, Green and Blue band |
Image spatial resolution | - | 2.16 × 2.43 cm | 1.11 × 1.11 cm |
Height | Steel tape ruler | Photogrammetry method | Photogrammetry method |
Crop Height Abbreviations | G-height | UHD-height | DC-height |
Sensors | High-Definition Digital Camera | Hyperspectral Sensor | ||
---|---|---|---|---|
Type | VIs | Equation | VIs | Equation |
Spectral information | R | DNr | B460 | 460 nm of hyperspectral reflectance |
G | DNg | B560 | 560 nm of hyperspectral reflectance | |
B | DNb | B670 | 670 nm of hyperspectral reflectance | |
r | R/(R + G + B) | B800 | 800 nm of hyperspectral reflectance | |
g | G/(R + G + B) | BGI | B460/B560 | |
b | B/(R + G + B) | NDVI | (B800 − B670)/(B800 + B670) | |
B/R | B/R | LCI | (B850 − B710)/(B850 + B670) | |
B/G | B/G | NPCI | (B670 − B460)/(B670 + B460) | |
R/G | R/G | EVI2 | 2.5 × (B800 − B670)/(B800 + 2.4 × B670 + 1) | |
EXR | 1.4 × r − g | OSAVI | 1.16 × (B800 − B670)/(B800 + B670 + 0.16) | |
VARI | (g − r)/(g + r − b) | SPVI | 0.4 × (3.7(B800 − B670) − 1.2 ×|B530 − B670|) | |
GRVI | (g − r)/(g + r) | MCARI | ((B700 − B670) − 0.2×(B700 − B560))/(B700/B670) | |
DSM information | Crop Height | Photogrammetry method | Crop Height | Photogrammetry method |
Dataset | Period | Crop Variables | Samples | Min | Mean | Max | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|
Calibration | Jointing | AGB | 32 | 1.45 | 2.76 | 4.52 | 0.67 | 24.28 |
LAI | 32 | 2.27 | 3.94 | 5.87 | 0.88 | 22.34 | ||
Height | 32 | 27.33 | 33.55 | 41.00 | 3.16 | 9.42 | ||
Flagging | AGB | 32 | 2.19 | 5.48 | 8.26 | 2.11 | 38.50 | |
LAI | 32 | 1.30 | 4.11 | 8.81 | 1.47 | 35.77 | ||
Height | 32 | 53.33 | 67.19 | 76.33 | 6.44 | 9.58 | ||
Flowering | AGB | 32 | 4.39 | 8.07 | 12.73 | 1.88 | 23.30 | |
LAI | 32 | 1.24 | 3.24 | 5.89 | 1.13 | 34.88 | ||
Height | 32 | 58.00 | 71.38 | 84.33 | 6.62 | 9.27 | ||
Validation | Jointing | AGB | 16 | 1.20 | 2.16 | 3.05 | 0.50 | 23.15 |
LAI | 16 | 1.69 | 2.98 | 4.39 | 0.68 | 22.82 | ||
Height | 16 | 25.67 | 29.18 | 34.33 | 2.11 | 7.23 | ||
Flagging | AGB | 16 | 2.21 | 4.36 | 6.01 | 1.24 | 28.44 | |
LAI | 16 | 1.72 | 4.33 | 6.63 | 1.53 | 35.33 | ||
Height | 16 | 53.33 | 62.37 | 70.66 | 5.12 | 8.21 | ||
Flowering | AGB | 16 | 3.41 | 7.21 | 10.56 | 1.98 | 27.46 | |
LAI | 16 | 1.34 | 3.39 | 5.53 | 1.27 | 37.46 | ||
Height | 16 | 55.00 | 69.60 | 82.33 | 7.50 | 10.78 |
Crop Parameters | Regression Equation Methods | |||||
---|---|---|---|---|---|---|
Equations | R2 | MAE | RMSE | |||
Jointing | AGB | G-MCARI | 0.66 | 0.30 | 0.39 | |
DC-G | 0.64 | 0.32 | 0.42 | |||
UHD-LCI | 0.50 | 0.38 | 0.49 | |||
LAI | G-MCARI | −374.23x + 8.406 | 0.62 | 0.44 | 0.54 | |
DC-G | 0.63 | 0.47 | 0.60 | |||
UHD-LCI | 0.45 | 0.51 | 0.68 | |||
Flagging | AGB | G-LCI | 0.67 | 0.75 | 0.84 | |
DC-b | 0.57 | 0.86 | 0.97 | |||
UHD-LCI | 0.58 | 2.61 | 2.85 | |||
LAI | G-LCI | 0.78 | 0.88 | 0.55 | ||
DC-b | 13327 | 0.76 | 0.88 | 0.47 | ||
UHD-NPCI | 0.74 | 0.92 | 0.51 | |||
Flowering | AGB | G-SPVI | 0.67 | 0.87 | 1.12 | |
DC-b | 0.74 | 0.86 | 1.19 | |||
UHD-BGI | 0.67 | 0.93 | 1.18 | |||
LAI | G-SPVI | 0.72 | 0.55 | 0.66 | ||
DC-b | 0.81 | 0.47 | 0.65 | |||
UHD-MCARI | 0.72 | 0.51 | 0.67 | |||
Total for three stages | AGB | G-LCI | 0.26 | 1.88 | 2.25 | |
DC-r | 0.67 | 1.19 | 1.71 | |||
UHD-LCI | 0.30 | 1.84 | 2.18 | |||
LAI | G-LCI | 0.59 | 0.67 | 0.88 | ||
DC-B | 0.55 | 0.70 | 0.90 | |||
UHD-LCI | 0.46 | 0.80 | 1.01 |
Crop Parameters | Regression Equation Methods | |||||
---|---|---|---|---|---|---|
Height | Equations | R2 | MAE | RMSE | ||
Jointing | AGB | G-height | 0.02 | 0.54 | 0.67 | |
DC-height | 0.03 | 0.56 | 0.67 | |||
UHD-height | 0.17 | 0.51 | 0.62 | |||
LAI | G-height | 0.01 | 0.68 | 0.88 | ||
DC-height | 0.08 | 0.68 | 0.89 | |||
UHD-height | 0.12 | 0.63 | 0.83 | |||
Flagging | AGB | G-height | 0.24 | 0.96 | 1.25 | |
DC-height | 0.30 | 1.12 | 1.36 | |||
UHD-height | 0.29 | 0.96 | 1.20 | |||
LAI | G-height | 0.33 | 0.98 | 1.34 | ||
DC-height | 0.40 | 1.00 | 1.34 | |||
UHD-height | 0.42 | 0.96 | 1.25 | |||
Flowering | AGB | G-height | 0.27 | 1.3 | 1.61 | |
DC-height | 0.36 | 1.26 | 1.61 | |||
UHD-height | 0.38 | 1.21 | 1.53 | |||
LAI | G-height | 0.22 | 0.78 | 1.00 | ||
DC-height | 0.33 | 0.76 | 0.97 | |||
UHD-height | 0.33 | 0.74 | 0.94 | |||
Total for three stages | AGB | G-height | 0.73 | 1.08 | 1.49 | |
DC-height | 0.73 | 1.00 | 1.29 | |||
UHD-height | 0.71 | 1.04 | 1.39 | |||
LAI | G-height | 0.01 | 1.01 | 1.31 | ||
DC-height | 0.01 | 1.01 | 1.31 | |||
UHD-height | 0.02 | 1.01 | 1.30 |
Crop Parameters | Regression Equation Methods | |||||
---|---|---|---|---|---|---|
Information | Equations | R2 | MAE | RMSE | ||
Jointing | AGB | G-height, MCARI | 0.56 | 0.38 | 0.46 | |
DC-height, G | 0.11 | 0.55 | 0.67 | |||
UHD-height, LCI | 0.19 | 0.50 | 0.61 | |||
LAI | G-height, MCARI | 0.47 | 0.54 | 0.65 | ||
DC-height, G | 0.01 | 0.67 | 0.88 | |||
UHD-height, LCI | 0.16 | 0.61 | 0.83 | |||
Flagging | AGB | G-height, LCI | 0.61 | 0.72 | 0.91 | |
DC-height, b | 0.30 | 1.09 | 1.27 | |||
UHD-height, LCI | 0.38 | 0.98 | 1.20 | |||
LAI | G-height, LCI | 0.79 | 0.60 | 0.86 | ||
DC-height, b | 0.43 | 1.07 | 1.41 | |||
UHD-height, NPCI | 0.68 | 0.80 | 1.06 | |||
Flowering | AGB | G-height, SPVI | 0.59 | 1.00 | 1.26 | |
DC-height, b | 0.37 | 1.20 | 1.49 | |||
UHD-height, BGI | 0.49 | 1.12 | 1.42 | |||
LAI | G-height, SPVI | 0.60 | 0.65 | 0.79 | ||
DC-height, b | 0.42 | 0.71 | 0.90 | |||
UHD-height, MCARI | 0.71 | 0.64 | 0.84 | |||
Total for three stages | AGB | G-height, LCI | 0.81 | 0.99 | 1.32 | |
DC-height, r | 0.77 | 1.02 | 1.30 | |||
UHD-height, LCI | 0.74 | 1.05 | 1.38 | |||
LAI | G-height, LCI | 0.07 | 1.00 | 1.27 | ||
DC-height, B | 0.04 | 1.01 | 1.29 | |||
UHD-height, LCI | 0.06 | 1.00 | 1.27 |
Methods | Data | AGB (t/ha) | LAI (m2/m2) | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE | nRMSE (%) | RMSE | R2 | MAE | nRMSE (%) | RMSE | ||
RF | G-VIs | 0.93 | 0.58 | 14.14 | 0.77 | 0.94 | 0.26 | 8.75 | 0.33 |
DC-VIs | 0.93 | 0.52 | 13.22 | 0.72 | 0.94 | 0.28 | 9.55 | 0.36 | |
UHD-VIs | 0.93 | 0.65 | 14.70 | 0.80 | 0.93 | 0.32 | 10.61 | 0.40 | |
PLSR | G-VIs | 0.35 | 1.75 | 38.39 | 2.09 | 0.58 | 0.64 | 22.81 | 0.86 |
DC-VIs | 0.61 | 1.19 | 29.76 | 1.62 | 0.50 | 0.73 | 24.67 | 0.93 | |
UHD-VIs | 0.34 | 1.77 | 38.58 | 2.10 | 0.45 | 0.80 | 25.73 | 0.97 |
Methods | Data | AGB (t/ha) | LAI (m2/m2) | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE | nRMSE (%) | RMSE | R2 | MAE | nRMSE (%) | RMSE | ||
RF | G-height, VIs | 0.96 | 0.40 | 10.47 | 0.57 | 0.95 | 0.24 | 8.22 | 0.31 |
DC-height, VIs | 0.96 | 0.42 | 10.10 | 0.55 | 0.94 | 0.27 | 9.54 | 0.36 | |
UHD-height, VIs | 0.94 | 0.55 | 13.04 | 0.71 | 0.94 | 0.31 | 10.34 | 0.39 | |
PLSR | G-height, VIs | 0.81 | 0.83 | 20.58 | 1.12 | 0.65 | 0.56 | 20.42 | 0.77 |
DC-height, VIs | 0.77 | 0.95 | 22.97 | 1.25 | 0.52 | 0.72 | 24.13 | 0.91 | |
UHD-height, VIs | 0.64 | 1.26 | 28.48 | 1.55 | 0.47 | 0.79 | 25.46 | 0.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sens. 2018, 10, 1138. https://doi.org/10.3390/rs10071138
Yue J, Feng H, Jin X, Yuan H, Li Z, Zhou C, Yang G, Tian Q. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sensing. 2018; 10(7):1138. https://doi.org/10.3390/rs10071138
Chicago/Turabian StyleYue, Jibo, Haikuan Feng, Xiuliang Jin, Huanhuan Yuan, Zhenhai Li, Chengquan Zhou, Guijun Yang, and Qingjiu Tian. 2018. "A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera" Remote Sensing 10, no. 7: 1138. https://doi.org/10.3390/rs10071138
APA StyleYue, J., Feng, H., Jin, X., Yuan, H., Li, Z., Zhou, C., Yang, G., & Tian, Q. (2018). A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sensing, 10(7), 1138. https://doi.org/10.3390/rs10071138