Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers
"> Figure 1
<p>Comparison of in situ temperature data from the kelp site with three independent sea surface temperature (SST) datasets near Plymouth, UK. (<b>a</b>) locations of the kelp site, surfing data collected at the two beaches (Wembury and Bovisand), Station L4, Station E1, the Penlee Atmospheric Observatory, and the location of satellite pixels from a high temporal resolution time-series of Land Surface Temperature (LST) data acquired from the Copernicus Global Land Service. The background is a three-year mean composite of AVHRR satellite SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data from July 2014 to June 2017. (<b>b</b>) time-series of SST acquired by the surfers at the two beaches overlain onto the kelp site temperature data; (<b>c</b>) scatter plots of match-ups (within ±1 h) between SST acquired by the surfer at the beaches and temperature data from the kelp site; (<b>d</b>) time-series of kelp site temperature data overlain onto the SST data from Station L4; (<b>e</b>) scatter plots of match-ups (within ±1 h) between SST at L4 and temperature data from the kelp site; (<b>f</b>) time-series of kelp site temperature data overlain onto the SST data from Station E1; (<b>g</b>) scatter plots of match-ups (within ±1 h) between SST at E1 and temperature data from the kelp site. <math display="inline"> <semantics> <msup> <mi>r</mi> <mn>2</mn> </msup> </semantics> </math> is the coefficient of determination, <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ψ</mi> </semantics> </math> the root mean square error, <math display="inline"> <semantics> <mi>δ</mi> </semantics> </math> the bias, <math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math> the centre-pattern (or unbiased) root mean square error, and <span class="html-italic">N</span> the number of match-ups.</p> "> Figure 2
<p>Comparison of Level 3 AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> passes and in situ data near Plymouth, UK. (<b>a</b>) locations of in situ time-series data at the kelp site, at Station L4, at Station E1, and the closest pixels selected from the AVHRR mapped Level 3 passes to be representative of the three locations (dark grey pixels); (<b>b</b>) time-series of AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> passes for the pixel closest to the kelp site overlain onto in situ temperature data from the kelp site; (<b>c</b>) scatter plots of match-ups (within ±1 h) between in situ temperature data from the kelp site and AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data at the kelp site; (<b>d</b>) time-series of AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> passes for the pixel closest to L4 overlain onto in situ SST at L4; (<b>e</b>) scatter plots of match-ups (within ±1 h) between SST acquired in situ and by AVHRR at L4; (<b>f</b>) time-series of AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> passes for the pixel closest to E1 overlain onto in situ SST at E1; (<b>g</b>) scatter plots of match-ups (within ±1 h) between SST acquired in situ and by AVHRR at E1. <math display="inline"> <semantics> <msup> <mi>r</mi> <mn>2</mn> </msup> </semantics> </math> is the coefficient of determination, <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ψ</mi> </semantics> </math> the root mean square error, <math display="inline"> <semantics> <mi>δ</mi> </semantics> </math> the bias, <math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math> the centre-pattern (or unbiased) root mean square error, and <span class="html-italic">N</span> the number of match-ups.</p> "> Figure 3
<p>Spatial maps of statistical tests for match-ups within ±1 h of in situ data for all AVHHR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> pixels within longitude −4.5 to −3.6<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> N and latitude 49.9 to 50.5<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> N. (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>,<b>m</b>) show match-ups for the kelp site, (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>,<b>n</b>) at Station L4 and (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>,<b>o</b>) at Station E1. (<b>a</b>–<b>c</b>) is the coefficient of determination (<math display="inline"> <semantics> <msup> <mi>r</mi> <mn>2</mn> </msup> </semantics> </math>), (<b>d</b>–<b>f</b>) the root mean square error (<math display="inline"> <semantics> <mi mathvariant="sans-serif">Ψ</mi> </semantics> </math>), (<b>g</b>–<b>i</b>) the centre-pattern (or unbiased) root mean square error (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>), (<b>j</b>–<b>l</b>) the bias (<math display="inline"> <semantics> <mi>δ</mi> </semantics> </math>), and (<b>m</b>–<b>o</b>) the number of match-ups (<span class="html-italic">N</span>).</p> "> Figure 4
<p>Spatial maps of statistical tests for match-ups within ±1 h of kelp site in situ data for all AVHHR pixels (SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> and SST<math display="inline"> <semantics> <msub> <mrow/> <mi>P</mi> </msub> </semantics> </math> products) within longitude −4.12 to −3.92<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> E and latitude 50.2 to 50.33<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> N. (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>) Show match-ups for the kelp site using AVHHR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data, (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>) show match-ups for the kelp site using AVHHR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>P</mi> </msub> </semantics> </math> data. (<b>a</b>,<b>b</b>) is the coefficient of determination (<math display="inline"> <semantics> <msup> <mi>r</mi> <mn>2</mn> </msup> </semantics> </math>), (<b>c</b>,<b>d</b>) the root mean square error (<math display="inline"> <semantics> <mi mathvariant="sans-serif">Ψ</mi> </semantics> </math>), (<b>e</b>,<b>f</b>) the centre-pattern (or unbiased) root mean square error (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>), (<b>g</b>,<b>h</b>) the bias (<math display="inline"> <semantics> <mi>δ</mi> </semantics> </math>), and (<b>i</b>,<b>j</b>) the number of match-ups (<span class="html-italic">N</span>).</p> "> Figure 5
<p>Differences between satellite AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data at the closest pixel to the kelp site and in situ temperature from the kelp site (<math display="inline"> <semantics> <mi>δ</mi> </semantics> </math>) as a function of a variety of variables. Bold plots show where there is a significant relationship (correlation between fit (linear or nonlinear) and data with a <span class="html-italic">p</span>-value <math display="inline"> <semantics> <mrow> <mo><</mo> <mn>0</mn> <mo>.</mo> <mn>001</mn> </mrow> </semantics> </math>). For the wind direction, we partitioned data into 0–180<math display="inline"> <semantics> <msup> <mspace width="0.166667em"/> <mo>∘</mo> </msup> </semantics> </math> and 180–360<math display="inline"> <semantics> <msup> <mspace width="0.166667em"/> <mo>∘</mo> </msup> </semantics> </math> and computed mean values and confidence intervals (both overlapped indicating no significant relationship between the two dominate wind directions, southwest and northeast). <span class="html-italic">r</span> is the Pearson correlation coefficient and <span class="html-italic">p</span> is the significance of this correlation.</p> "> Figure 6
<p>Differences between temperature data at the kelp site and at Station L4, as a function of decimal hour of day, solar zenith angle and Land Surface Temperature (LST), from AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> (top row) and for in situ data (bottom row). <span class="html-italic">r</span> is the Pearson correlation coefficient and <span class="html-italic">p</span> is the significance of this correlation.</p> "> Figure 7
<p>(<b>a</b>) Spatial maps (per-pixel) of the mean bias (<math display="inline"> <semantics> <mi>δ</mi> </semantics> </math>) between AVHHR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data and in situ kelp site data (within ±1 h) during the day (solar zenith angle <90<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>); (<b>b</b>) during the night (solar zenith angle >90<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>); and (<b>c</b>) the difference between (<b>a</b>,<b>b</b>), i.e., day <math display="inline"> <semantics> <mi>δ</mi> </semantics> </math> minus night <math display="inline"> <semantics> <mi>δ</mi> </semantics> </math>; (<b>d</b>) shows per-pixel Pearson correlations (<span class="html-italic">r</span>) between solar zenith angle and the differences between satellite AVHRR SST<math display="inline"> <semantics> <msub> <mrow/> <mi>N</mi> </msub> </semantics> </math> data and in situ temperature from the kelp site; (<b>e</b>) the same as (<b>d</b>) but using land surface temperature (LST) rather than solar zenith angle; (<b>f</b>) the same as (<b>d</b>) but using SST (kelp site) minus LST, rather than solar zenith angle.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Site: Plymouth, United Kingdom
2.2. Statistical Tests
2.3. In Situ Temperature Datasets and Auxiliary Measurements
2.3.1. Kelp Site Water Temperature Measurements
2.3.2. SST Measurements Collected by Surfers at the Coastline
2.3.3. SST from Station L4 and E1
2.3.4. Observations at Penlee Point Atmospheric Observatory
2.3.5. Land Surface Temperature Data
2.4. Satellite SST Datasets
2.5. Comparison of Datasets
2.5.1. Comparison of In Situ Datasets
2.5.2. Comparisons of Satellite and In Situ Datasets
3. Results and Discussion
3.1. In Situ Comparison
3.2. Validation of AVHRR Data
3.3. Understanding Differences between Satellite and In Situ SST Data at the Coastline
3.4. Forward Outlook
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Pearson Correlation Coefficient (r)
Appendix A.2. Coefficient of Determination ()
Appendix A.3. Root Mean Square Difference (Ψ)
Appendix A.4. The Bias (δ)
Appendix A.5. The Centre-Pattern Root Mean Square Difference (Δ)
References
- Arias, A.H.; Menendez, M. Marine Ecology in a Changing World; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Livingston, R.J. Climate Change and Coastal Ecosystems: Long-Term Effects Of Climate and Nutrient Loading on Trophic Organization; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Bertocci, I.; Araújo, R.; Oliveira, P.; Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 2015, 52, 1216–1226. [Google Scholar] [CrossRef]
- Duarte, C. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 2017, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.; Harff, J.; You, Z.J.; Zhang, H.; Wolanski, E. Sustainability of future coasts and estuaries: A synthesis. Estuar. Coast. Shelf Sci. 2016, 183, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Airoldi, L.; Beck, M.W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 2007, 35, 345–405. [Google Scholar]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. A global strategy for protecting vulnerable coastal populations. Science 2014, 345, 1250–1251. [Google Scholar] [CrossRef] [PubMed]
- Bulleri, F.; Chapman, M.G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Harley, C.D.G.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernberg, T.; Russell, B.D.; Moore, P.J.; Ling, S.D.; Smale, D.A.; Coleman, M.; Steinberg, P.D.; Kendrick, G.A.; Connell, S.D. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 2011, 400, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.G.; Vale, C.; Soares, C.V.; Salas, F.; Stacey, P.E.; Bricker, S.B.; Silva, M.C.; Marques, J.C. Monitoring of coastal and transitional waters under the E.U. Water Framework Directive. Environ. Monit. Assess. 2007, 135, 195–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- GCOS. Systematic Observation Requirements from Satellite-Based Data Products for Climate; Technical Report; World Meteorological Organisation (WMO): Geneva, Switzerland, 2011. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
- Brown, E.; Colling, A.; Park, D.; Phillips, J.; Rothery, D.; Wright, J. Seawater: Its Composition, Properties and Behaviour; Butterworth-Heinemann: Oxford, UK, 1995. [Google Scholar]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of Size and Temperature on Metabolic Rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [PubMed]
- Portner, H.O. Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. Part A 2002, 132, 739–761. [Google Scholar] [CrossRef]
- Smale, D.A.; Taylor, J.D.; Coombs, S.H.; Moore, G.; Cunliffe, M. Community responses to seawater warming are conserved across diverse biological groupings and taxonomic resolutions. Proc. R. Soc. B Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. 1970, 17, 721–735. [Google Scholar] [CrossRef]
- Lee, K.; Tong, L.; Millero, F.J.; Sabine, C.L.; Dickson, A.G.; Goyet, C.; Park, G.H.; Wanninkhof, R.; Feely, R.A.; Key, R.M. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Vergés, A.; Steinberg, P.D.; Hay, M.E.; Poore, A.G.B.; Campbell, A.H.; Ballesteros, E.; Heck, K.L.; Booth, D.J.; Coleman, M.A.; Feary, D.A.; et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 2014, 281. [Google Scholar] [CrossRef] [PubMed]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonne, P.; Cigliano, M.; Diaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, C.J.; Embury, O.; Roberts-Jones, J.; Fiedler, E.; Bulgin, C.E.; Corlett, G.K.; Good, S.; McLaren, A.; Rayner, N.; Morak-Bozzo, S.; et al. Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 2014, 1, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Smit, A.J.; Roberts, M.; Anderson, R.J.; Dufois, F.; Dudley, S.F.; Bornman, T.G.; Olbers, J.; Bolton, J.J. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 2013, 8, e81944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewin, R.J.W.; de Mora, L.; Billson, O.; Jackson, T.; Russell, P.; Brewin, T.G.; Shutler, J.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; et al. Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar. Coast. Shelf Sci. 2017, 196, 276–289. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; de Mora, L.; Jackson, T.; Brewin, T.G.; Shutler, J. On the potential of surfers to monitor environmental indicators in the coastal zone. PLoS ONE 2015, 10, e0127706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewin, R.J.W.; Hyder, K.; Andersson, A.J.; Billson, O.; Bresnahan, P.J.; Brewin, T.G.; Cyronak, T.; Dall’Olmo, G.; de Mora, L.; Graham, G.; et al. Expanding aquatic observations through recreation. Front. Mar. Sci. 2017, 4, 351. [Google Scholar] [CrossRef]
- Bresnahan, P.J.; Wirth, T.; Martz, T.R.; Andersson, A.J.; Cyronak, T.; D’Angelo, S.; Pennise, J.; Melville, W.K.; Lenain, L.; Statom, N. A sensor package for mapping pH and oxygen from mobile platforms. Methods Oceanogr. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Hut, R.; Tyler, S.; van Emmerik, T. Proof of concept: Temperature-sensing waders for environmental sciences. Geosci. Instrum. Method. Data Syst. 2016, 5, 45–51. [Google Scholar] [CrossRef]
- Wright, S.; Hull, T.; Sivyer, D.B.; Pearce, D.; Pinnegar, J.K.; Sayer, M.D.J.; Mogg, A.O.M.; Azzopardi, E.; Gontarek, S.; Hyder, K. SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Burrows, M.T.; Evans, A.J.; King, N.; Sayer, M.D.; Yunnie, A.L.; Moore, P.J. Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within UK kelp forests. Mar. Ecol. Prog. Ser. 2016, 542, 79–95. [Google Scholar] [CrossRef]
- Smale, D.A.; Moore, P.J. Variability in kelp forest structure along a latitudinal gradient in ocean temperature. J. Exp. Mar. Biol. Ecol. 2017, 486, 255–264. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 2009, 387, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Stobart, B.; Mayfield, S.; Mundy, C.; Hobday, A.J.; Hartog, J.R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: How reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia? Mar. Freshw. Res. 2016, 67, 612–625. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Fletcher, S.; Saunders, J.; Herbert, R. A review of the ecosystem services provided by broad-scale marine habitats in England’s MPA network. J. Coast. Res. 2011, 64, 378–383. [Google Scholar]
- Maier, G.; Nimmo-Smith, R.J.; Glegg, G.A.; Tappin, A.D.; Worsfold, P.J. Estuarine eutrophication in the UK: Current incidence and future trends. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 43–56. [Google Scholar] [CrossRef]
- L’Hévéder, B.; Speich, S.; Ragueneau, O.; Gohin, F.; Bryère, P. Observed and projected sea surface temperature seasonal changes in the Western English Channel from satellite data and CMIP5 multi-model ensemble. Int. J. Climatol. 2016, 37, 2831–2849. [Google Scholar] [CrossRef] [Green Version]
- Frost, M.T.; Bayliss-Brown, G.; Buckley, P.; Cox, M.; Dye, S.R.; Sanderson, W.G.; Stoker, B.; Withers Harvey, N. A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 576–595. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Schrum, C.; Cannaby, H.; Daewel, U.; Allen, I.; Artioli, Y.; Bopp, L.; Butenschon, M.; Fach, B.; Harle, J.; Pushpadas, D. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Prog. Oceanogr. 2016, 140, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.A.; Papathanasopoulou, E.; Hattam, C.; Queirós, A.M.; Cheung, W.W.; Yool, A.; Artioli, Y.; Pope, E.C.; Flynn, K.J.; Merino, G.; Calosi, P. Estimating the ecological, economic and social impacts of ocean acidification and warming on UK fisheries. Fish Fish. 2017, 18, 389–411. [Google Scholar] [CrossRef]
- Doney, S.C.; Lima, I.D.; Moore, J.K.; Lindsay, K.; Behrenfeld, M.J.; Westberry, T.K.; Mahowald, N.; Glover, D.M.; Takahashi, T. Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. J. Mar. Syst. 2009, 76, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Brewin, R.J.W.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.Y.; Devred, E.; Doerffer, R.; Fomferra, N.; Franz, B.A.; Grant, M.; et al. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2015, 162, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C. Sentinel-3 Mission Requirements Traceability Document (MRTD). Technical Report. Available online: http://download.esa.int/docs/EarthObservation/GMES_Sentinel-3_MRTD_Iss-1_Rev-0-issued-signed.pdf (accessed on 5 September 2017).
- Smyth, T.J.; Fishwick, J.R.; Gallienne, C.P.; Stephens, J.A.; Bale, A.J. Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel. J. Atmos. Ocean. Technol. 2010, 27, 2056–2064. [Google Scholar] [CrossRef]
- Minnett, P.J.; Barton, I.J. chapter Remote Sensing of the Earth’s Surface Temperature. In Radiometric Temperature Measurements: II. Applications; Elsevier Inc.: New York, NY, USA, 2010; pp. 333–392. [Google Scholar]
- Yang, M.; Bell, T.; Hopkins, F.; Kitidis, V.; Cazenave, P.; Nightingale, P.; Yelland, M.; Pascal, R.; Prytherch, J.; Brooks, I.; et al. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK. Atmos. Chem. Phys. 2016, 16, 5745–5761. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Bell, T.; Hopkins, F.; Smyth, T. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions. Atmos. Chem. Phys. 2016, 16, 4771–4783. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.; Groom, S.; McManus, A.; Selley, J.; Mironnet, N. PANORMA: A semi-automated AVHRR and CZCS system for observation of coastal and ocean processes. In Proceedings of the Remote Sensing Society Annual Conference, Observations and Interactions, Reading, UK, 2–4 September 1997. [Google Scholar]
- Sandford, T.D.G.; Stephenson, J. Orbital prediction for the NOAA satellite series. In Proceedings of the Remote Sensing Society Annual Conference, Dundee, UK, 15–17 September 1992; pp. 424–433. [Google Scholar]
- Bordes, P.; Brunel, P.; Marsouin, A. Automatic adjustment of AVHRR navigation. J. Atmos. Ocean. Technol. 1992, 9, 15–27. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef] [Green Version]
- Thiermann, V.; Ruprecht, E. A method for detection of clouds using AVHRR infrared observations. Int. J. Remote Sens. 1992, 13, 1829–1841. [Google Scholar] [CrossRef]
- Roozekrans, J.N.; Prangsma, G.J. Processing and Application of Digital AVHRR Imagery for Land And Sea Surfaces; Final Report of BCRS Project No: TO-3.1 “Digital thermal imagery of land and sea surfaces”. Technical Report; Royal Netherlands Meteorological Institute (KNMI): De Beert, The Netherlands, 1988. [Google Scholar]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The Development and Operational Application of Nonlinear Algorithms for the Measurement of Sea Surface Temperatures with the NOAA Polar-Orbiting Environmental Satellites. J. Geophys. Res. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Barton, I.J. Digitization effects in AVHRR and MCSST data. Remote Sens. Environ. 1989, 29, 87–89. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 2011, 116, G03025. [Google Scholar] [CrossRef]
- Stewart, K.R.; Lewison, R.L.; Dunn, D.C.; Borkland, R.H.; Kelez, S.; Halpin, P.N.; Crowder, L.B. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries. PLoS ONE 2010, 5, e14451. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, N.J.; Austen, M.C.; Mangi, S.C.; Townsend, M. Economic valuation for the conservation of marine biodiversity. Mar. Pollut. Bull. 2008, 56, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, R.M. Retrieval of Sea Surface Temperature from MODIS Data in Coastal Waters. Sustainability 2017, 9, 2032. [Google Scholar] [CrossRef]
- Cavalli, R.M. Comparison of Split Window Algorithms for Retrieving Measurements of Sea Surface Temperature from MODIS Data in Near-L and Coastal Waters. ISPRS Int. J. Geo-Inf. 2018, 7, 30. [Google Scholar] [CrossRef]
- Teggi, S.; Despini, F. Estimation of subpixel MODIS water temperature near coastlines using the SWTI algorithm. Remote Sens. Environ. 2014, 142, 122–130. [Google Scholar] [CrossRef]
- Teggi, S. A technique for spatial sharpening of thermal imagery of coastal waters and of water courses. Int. J. Remote Sens. 2012, 33, 3063–3089. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Kawamura, H.; Sakaida, F.; Hosoda, K. Retrieval of high-resolution sea surface temperature data for Sendai Bay, Japan, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens. Environ. 2011, 115, 205–213. [Google Scholar] [CrossRef]
- Sentlinger, G.I.; Hook, S.J.; Laval, B. Sub-pixel water temperature estimation from thermal-infrared imagery using vectorized lake features. Remote Sens. Environ. 2008, 112, 1678–1688. [Google Scholar] [CrossRef]
- Fedak, M. Marine animals as platforms for oceanographic sampling: A “winwin” situation for biology and operational oceanography. Mem. Natl. Inst. Polar Res. 2004, 58, 133–147. [Google Scholar]
- Rudnick, D.; Davis, R.E.; Eriksen, C.C.; Fratantoni, D.M.; Perry, M.J. Underwater gliders for ocean research. Mar. Technol. Soc. J. 2004, 38, 73–84. [Google Scholar] [CrossRef]
- Shively, D.A.; Nevers, M.B.; Breitenbach, C.; Phanikumar, M.S.; Przybyla-Kelly, K.; Spoljaric, A.M.; Whitman, R.L. Prototypic automated continuous recreational water quality monitoring of nine Chicago beaches. J. Environ. Manag. 2016, 166, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Raymond, D.; Parish, D.; Ashton, I.G.; Miller, P.I.; Campos, C.J.; Shutler, J.D. Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring. Aquac. Eng. 2018, 80, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leichter, J.J.; Helmuth, B.; Fischer, A.M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 2006, 64, 563–588. [Google Scholar] [CrossRef]
Statistical Tests | L4 | E1 | Kelp Site | Brewin et al. [30] | |||
---|---|---|---|---|---|---|---|
SST | SST | SST | SST | SST | SST | SST | |
0.95 | 0.95 | 0.97 | 0.96 | 0.83 | 0.82 | 0.89 | |
0.55 | 0.55 | 0.48 | 0.52 | 1.30 | 1.35 | 1.12 | |
0.55 | 0.55 | 0.48 | 0.52 | 1.27 | 1.29 | 1.05 | |
0.01 | −0.02 | 0.01 | −0.02 | −0.30 | −0.39 | −0.39 | |
N | 646 | 642 | 874 | 871 | 691 | 703 | 14 |
Variables | L4 | E1 | Kelp Site | |||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Solar Zenith Angle | −0.15 | <0.001 | −0.07 | 0.053 | −0.50 | <0.001 |
Air Temperature | 0.18 | <0.001 | 0.05 | 0.206 | 0.31 | <0.001 |
LST | 0.01 | 0.621 | 0.15 | <0.001 | 0.52 | <0.001 |
Relative Humidity | −0.11 | 0.008 | −0.12 | <0.001 | −0.14 | <0.001 |
Air Pressure | −0.04 | 0.336 | 0.06 | 0.080 | 0.10 | 0.008 |
Wind Speed | −0.02 | 0.657 | 0.02 | 0.561 | 0.06 | 0.146 |
CO | −0.09 | 0.080 | 0.02 | 0.700 | −0.13 | 0.006 |
SO | 0.05 | 0.267 | 0.09 | 0.018 | 0.01 | 0.806 |
CH | 0.06 | 0.290 | 0.07 | 0.097 | 0.00 | 0.954 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewin, R.J.W.; Smale, D.A.; Moore, P.J.; Dall’Olmo, G.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; Fishwick, J.R.; Yang, M. Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sens. 2018, 10, 925. https://doi.org/10.3390/rs10060925
Brewin RJW, Smale DA, Moore PJ, Dall’Olmo G, Miller PI, Taylor BH, Smyth TJ, Fishwick JR, Yang M. Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sensing. 2018; 10(6):925. https://doi.org/10.3390/rs10060925
Chicago/Turabian StyleBrewin, Robert J. W., Dan A. Smale, Pippa J. Moore, Giorgio Dall’Olmo, Peter I. Miller, Benjamin H. Taylor, Tim J. Smyth, James R. Fishwick, and Mingxi Yang. 2018. "Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers" Remote Sensing 10, no. 6: 925. https://doi.org/10.3390/rs10060925
APA StyleBrewin, R. J. W., Smale, D. A., Moore, P. J., Dall’Olmo, G., Miller, P. I., Taylor, B. H., Smyth, T. J., Fishwick, J. R., & Yang, M. (2018). Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sensing, 10(6), 925. https://doi.org/10.3390/rs10060925